ﻻ يوجد ملخص باللغة العربية
Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.
We show experimentally that the terahertz (THz) emission of a plasma, generated in air by a two-color laser pulse (containing a near IR frequency and its second harmonic), can be enhanced by the addition of an 800-nm pulse. We observed enhancements o
Rare earth elements recycling has been proposed to alleviate supply risks and market volatility. In this context, the potential of a new recycling pathway, namely plasma mass separation, is uncovered through the example of nedodymium - iron - boron m
Recently, two novel techniques for the extraction of the phase-shift map (Tomassini {it et.~al.}, Applied Optics {bf 40} 35 (2001)) and the electronic density map estimation (Tomassini P. and Giulietti A., Optics Communication {bf 199}, pp 143-148 (2
Computational modeling is an important aspect of the research on nuclear waste materials. In particular, atomistic simulations, when used complementary to experimental efforts, contribute to the scientific basis of safety case for nuclear waste repos
We report the highest compression reached in laboratory plasmas using eight laser beams, E$_{laser}$$approx$12 kJ, $tau_{laser}$=2 ns in third harmonic on a CD$_2$ target at the ShenGuang-II Upgrade (SGII-Up) facility in Shanghai, China. We estimate