ترغب بنشر مسار تعليمي؟ اضغط هنا

Centrifugal separation and equilibration dynamics in an electron-antiproton plasma

97   0   0.0 ( 0 )
 نشر من قبل Joel Fajans
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.



قيم البحث

اقرأ أيضاً

We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for measurement of the static magnetic fiel d and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasmas quadrupole mode frequency. The spatially-resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.
The interaction of ultra-intense laser pulses with an underdense plasma is used in laser-plasma acceleration to create compact sources of ultrashort pulses of relativistic electrons and X-rays. The accelerating structure is a plasma wave, or wakefiel d, that is excited by the laser ponderomotive force, a force that is usually assumed to depend solely on the laser envelope and not on its exact waveform. Here, we use near-single-cycle laser pulses with a controlled carrier-envelope-phase (CEP) to show that the actual waveform of the laser field has a clear impact on the plasma response. We measure relativistic electron beams that are found to be strongly CEP dependent, implying that we achieve waveform control of electron dynamics in underdense laser-plasma interaction. Our results pave the way to high precision, sub-cycle control of electron injection in plasma accelerators, enabling the production of attosecond relativistic electron bunches and X-rays.
The dynamic process of a laser or particle beam propagating from vacuum into underdense plasma has been investigated theoretically. Our theoretical model combines a Lagrangian fluid model with the classic quasistatic wakefield theory. It is found tha t background electrons can be injected into wakefields because sharp vacuum-plasma transitions can reduce the injection threshold. The injection condition, injection threshold as well as the injection length can be given theoretically by our model and are compared with results from computer simulations. Moreover, electron beams of high qualities can be produced near the injection thresholds and the proposed scheme is promising in reducing the injection threshold and improving the beam qualities of plasma based accelerators.
70 - Eduard P. Kontar 2019
The dynamics of a hot electron cloud in the solar corona-like plasma based on the numerical solution of kinetic equations of weak turbulence theory is considered. Different finite difference schemes are examined to fit the exact analytical solutions of quasilinear equations in hydrodynamic limit (gas-dynamic solution). It is shown that the scheme suggested demonstrates correct asymptotic behavior and can be employed to solve initial value problems for an arbitrary initial electron distribution function.
We investigate the existence conditions and propagation properties of electron-acoustic solitary waves in a plasma consisting of an electron beam fluid, a cold electron fluid, and a hot suprathermal electron component modeled by a $kappa$-distributio n function. The Sagdeev pseudopotential method was used to investigate the occurrence of stationary-profile solitary waves. We have determined how the soliton characteristics depend on the electron beam parameters. It is found that the existence domain for solitons becomes narrower with an increase in the suprathermality of hot electrons, increasing the beam speed, and decreasing the beam-to-cold electron population ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا