ﻻ يوجد ملخص باللغة العربية
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z >= 3, utilising a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman-alpha emitters recently obtained with the MUSE instrument (halo masses ~10^10-10^11 solar masses). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photo/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (~ 50 kms^-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.
We examine the properties of the low-redshift circumgalactic medium (CGM) around star-forming and quenched galaxies in the Simba cosmological hydrodynamic simulations, focusing on comparing HI and metal line absorption to observations from the COS-Ha
Cold, non-self-gravitating clumps occur in various astrophysical systems, ranging from the interstellar and circumgalactic medium (CGM), to AGN outflows and solar coronal loops. Cold gas has diverse origins such as turbulent mixing or precipitation f
We use adaptive mesh refinement cosmological simulations to study the spatial distribution and covering fraction of OVI absorption in the circumgalactic medium (CGM) as a function of projected virial radius and azimuthal angle. We compare these simul
The majority of galactic baryons reside outside of the galactic disk in the diffuse gas known as the circumgalactic medium (CGM). While state-of-the art simulations excel at reproducing galactic disk properties, many struggle to drive strong galactic
Traditional cosmological hydrodynamics simulations fail to spatially resolve the circumgalatic medium (CGM), the reservoir of tenuous gas surrounding a galaxy and extending to its virial radius. We introduce the technique of Enhanced Halo Resolution