ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooling flows around cold clouds in the circumgalactic medium: steady-state models & comparison with TNG50

130   0   0.0 ( 0 )
 نشر من قبل Alankar Dutta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cold, non-self-gravitating clumps occur in various astrophysical systems, ranging from the interstellar and circumgalactic medium (CGM), to AGN outflows and solar coronal loops. Cold gas has diverse origins such as turbulent mixing or precipitation from hotter phases. We obtain the analytic solution for a steady pressure-driven 1-D cooling flow around cold over-densities, irrespective of their origin. Our solutions describe the slow and steady radiative cooling-driven local gas inflow in the saturated regime of nonlinear thermal instability in clouds, sheets and filaments. We use a simple two-fluid treatment to include magnetic fields as an additional polytropic fluid. To test the limits of applicability of these analytic solutions, we compare with the gas structure found in and around small-scale cold clouds in the CGM of massive halos in the TNG50 cosmological MHD simulation from the IllustrisTNG suite. Despite qualitative resemblance of the gas structure, we find that deviations from steady state, complex geometries and turbulence all add complexity beyond our analytic solutions. We derive an exact relation between the mass cooling rate ($dot{rm M}_{rm cool}$) and the radiative cooling rate ($dot{rm E}_{rm cool}$) for a steady cooling flow. A comparison with the TNG50 clouds shows that this cooling flow relation applies in a narrow temperature range around $rm sim 10^{4.5}$ K where the isobaric cooling time is the shortest. In general, turbulence and mixing, instead of radiative cooling, may dominate the transition of gas between different temperature phases.



قيم البحث

اقرأ أيضاً

We outline theoretical predictions for extended emission from MgII, tracing cool ~10^4 K gas in the circumgalactic medium (CGM) of star-forming galaxies in the high-resolution TNG50 cosmological magnetohydrodynamical simulation. We synthesize surface brightness maps of this strong rest-frame ultraviolet metal emission doublet (2796, 2803), adopting the assumption that the resonant scattering of MgII can be neglected and connecting to recent and upcoming observations with the Keck/KCWI, VLT/MUSE, and BlueMUSE optical integral field unit spectrographs. Studying galaxies with stellar masses 7.5 < log(M*/M_sun) < 11 at redshifts z=0.3, 0.7, 1 and 2 we find that extended MgII halos in emission, similar to their Lyman-alpha counterparts, are ubiquitous across the galaxy population. Median surface brightness profiles exceed 10^-19 erg/s/cm^2/arcsec^2 in the central ~10s of kpc, and total halo MgII luminosity increases with mass for star-forming galaxies, reaching 10^40 erg/s for M* ~ 10^9.5 Msun. MgII halo sizes increase from a few kpc to > 20 kpc at the highest masses, and sizes are larger for halos in denser environments. MgII halos are highly structured, clumpy, and asymmetric, with isophotal axis ratio increasing with galaxy mass. Similarly, the amount and distribution of MgII emission depends on the star formation activity of the central galaxy. Kinematically, inflowing versus outflowing gas dominates the MgII luminosity at high and low galaxy masses, respectively, although the majority of MgII halo emission at z~0.7 traces near-equilibrium fountain flows and gas with non-negligible rotational support, rather than rapidly outflowing galactic winds.
We use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to explore the properties and origin of cold circumgalactic medium (CGM) gas around massive galaxies (M* > 10^11 Msun) at intermediate redshift (z~0.5). We discover a sign ificant abundance of small-scale, cold gas structure in the CGM of red and dead elliptical systems, as traced by neutral HI and MgII. Halos can host tens of thousands of discrete absorbing cloudlets, with sizes of order a kpc or smaller. With a Lagrangian tracer analysis, we show that cold clouds form due to strong drho/rho >> 1 gas density perturbations which stimulate thermal instability. These local overdensities trigger rapid cooling from the hot virialized background medium at ~10^7 K to radiatively inefficient ~10^4 K clouds, which act as cosmologically long-lived, stimulated cooling seeds in a regime where the global halo does not satisfy the classic tcool/tff < 10 criterion. Furthermore, these small clouds are dominated by magnetic rather than thermal pressure, with plasma beta << 1, suggesting that magnetic fields may play an important role. The number and total mass of cold clouds both increase with resolution, and the ~8x10^4 Msun cell mass of TNG50 enables the ~few hundred pc, small-scale CGM structure we observe to form. Finally, we make a preliminary comparison against observations from the COS-LRG, LRG-RDR, COS-Halos, and SDSS LRG surveys. We broadly find that our recent, high-resolution cosmological simulations produce sufficiently high covering fractions of extended, cold gas as observed to surround massive galaxies.
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z >= 3, utilising a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman-alph a emitters recently obtained with the MUSE instrument (halo masses ~10^10-10^11 solar masses). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photo/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (~ 50 kms^-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.
We demonstrate the presence of an extended and massive circumgalactic medium (CGM) around Messier 31 using archival HST COS ultraviolet spectroscopy of 18 QSOs projected within two virial radii of M31 (Rvir=300 kpc). We detect absorption from SiIII a t -300<vLSR}<-150 km/s toward all 3 sightlines at R<0.2Rvir, 3 of 4 sightlines at 0.8<R/Rvir<1.1, and possibly 1 of 11 at 1.1<R/Rvir<1.8. We present several arguments that the gas at these velocities observed in these directions originates from the CGM of M31 rather than the Local Group or Milky Way CGM or Magellanic Stream. We show that the dwarf galaxies located in the CGM of M31 have very similar velocities over similar projected distances from M31. We find a non-trivial relationship only at these velocities between the column densities (N) of all the ions and R, whereby N decreases with increasing R. Singly ionized species are only detected in the inner CGM of M31 at R<0.2Rvir. At R<0.8 Rvir, the covering fraction is close to unity for SiIII and CIV (fc~60%-97% at the 90% confidence level), but drops to fc<10-20% at R>Rvir. We show that the M31 CGM gas is bound, multiphase, predominantly ionized (i.e., HII>>HI), and becomes more highly ionized gas at larger R. We estimate using SiII, SiIII, and SiIV a CGM metal mass of at least 2x10^6 Msun and gas mass of >3x10^9(Zsun/Z) Msun within 0.2 Rvir, and possibly a factor ~10 larger within Rvir, implying substantial metal and gas masses in the CGM of M31. Compared with galaxies in the COS-Halos survey, the CGM of M31 appears to be quite typical for a L* galaxy.
In this paper we present Multi Unit Spectroscopic Explorer (MUSE) integral field unit spectroscopic observations of the $sim70times30$ kpc$^2$ Ly$alpha$ halo around the radio galaxy 4C04.11 at $z = 4.5077$. High-redshift radio galaxies (HzRGs) are ho sted by some of the most massive galaxies known at any redshift and are unique markers of concomitant powerful active galactic nucleus (AGN) activity and star formation episodes. We map the emission and kinematics of the Ly$alpha$ across the halo as well as the kinematics and column densities of eight HI absorbing systems at $-3500 < Delta v < 0$ km s$^{-1}$. We find that the strong absorber at $Delta v sim 0,rm km,s^{-1}$ has a high areal coverage ($30times30$ kpc$^2$), being detected across a large extent of the Ly$alpha$ halo, a significant column density gradient along the southwest to northeast direction, and a velocity gradient along the radio jet axis. We propose that the absorbing structure, which is also seen in CIV and NV absorption, represents an outflowing metal-enriched shell driven by a previous AGN or star formation episode within the galaxy and is now caught up by the radio jet, leading to jet-gas interactions. These observations provide evidence that feedback from AGN in some of the most massive galaxies in the early Universe may play an important role in redistributing material and metals in their environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا