ترغب بنشر مسار تعليمي؟ اضغط هنا

The Low Redshift Circumgalactic Medium in Simba

96   0   0.0 ( 0 )
 نشر من قبل Sarah Appleby
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the properties of the low-redshift circumgalactic medium (CGM) around star-forming and quenched galaxies in the Simba cosmological hydrodynamic simulations, focusing on comparing HI and metal line absorption to observations from the COS-Halos and COS-Dwarfs surveys. Halo baryon fractions are generally $lesssim 50%$ of the cosmic fraction due to stellar feedback at low masses, and jet-mode AGN feedback at high masses. Baryons and metals in the CGM of quenched galaxies are $gtrsim 90%$ hot gas, while the CGM of star-forming galaxies is more multi-phase. Hot CGM gas has low metallicity, while warm and cool CGM gas have metallicity close to that of galactic gas. Equivalent widths, covering fractions and total path absorption of HI and selected metal lines (MgII, SiIII, CIV and OVI) around a matched sample of Simba star-forming galaxies are mostly consistent with COS-Halos and COS-Dwarfs observations to $lesssim 0.4$~dex, depending on ion and assumed ionising background. Around matched quenched galaxies, absorption in all ions is lower, with HI absorption significantly under-predicted. Metal-line absorption is sensitive to choice of photo-ionising background; assuming recent backgrounds, Simba matches OVI but under-predicts low ions, while an older background matches low ions but under-predicts OVI. Simba reproduces the observed dichotomy of OVI absorption around star forming and quenched galaxies. CGM metals primarily come from stellar feedback, while jet-mode AGN feedback reduces absorption particularly for lower ions.


قيم البحث

اقرأ أيضاً

We analyze new far-ultraviolet spectra of 13 quasars from the z~0.2 COS-Halos survey that cover the HI Lyman limit of 14 circumgalactic medium (CGM) systems. These data yield precise estimates or more constraining limits than previous COS-Halos measu rements on the HI column densities NHI. We then apply a Monte-Carlo Markov Chain approach on 32 systems from COS-Halos to estimate the metallicity of the cool (T~10^4K) CGM gas that gives rise to low-ionization state metal lines, under the assumption of photoionization equilibrium with the extragalactic UV background. The principle results are: (1) the CGM of field L* galaxies exhibits a declining HI surface density with impact parameter Rperp (at >99.5%$ confidence), (2) the transmission of ionizing radiation through CGM gas alone is 70+/-7%; (3) the metallicity distribution function of the cool CGM is unimodal with a median of 1/3 Z_Sun and a 95% interval from ~1/50 Z_Sun to over 3x solar. The incidence of metal poor (<1/100 Z_Sun) gas is low, implying any such gas discovered along quasar sightlines is typically unrelated to L* galaxies; (4) we find an unexpected increase in gas metallicity with declining NHI (at >99.9% confidence) and, therefore, also with increasing Rperp. The high metallicity at large radii implies early enrichment; (5) A non-parametric estimate of the cool CGM gas mass is M_CGM_cool = 9.2 +/- 4.3 10^10 Msun, which together with new mass estimates for the hot CGM may resolve the galactic missing baryons problem. Future analyses of halo gas should focus on the underlying astrophysics governing the CGM, rather than processes that simply expel the medium from the halo.
109 - Renyue Cen 2016
Utilizing high-resolution cosmological hydrodynamic simulations we investigate various ultra-violet absorption lines in the circumgalactic medium of star forming galaxies at low redshift, in hopes of checking and alleviating the claimed observational conundrum of the ratio of NV to OVI absorbers, among others. We find a satisfactory agreement between simulations and extant observational data with respect to the ratios of the following four line pairs examined, NV/OVI, SiIV/OVI, NIII/OVI and NII/OVI. For the pairs involving nitrogen lines, we examine two cases of nitrogen abundance, one with constant N/O ratio and the other with varying N/O ratio, with the latter motivated by theoretical considerations of two different synthetic sources of nitrogen that is empirically verified independently. Along a separate vector, for all line pairs, we examine two cases of radiation field, one with the Haardt-Madau background radiation field and the other with an additional local radiation field sourced by hot gas in the host galaxy. In all cases, two-sample Kolmogorov-Smirnov tests indicate excellent agreements. We find that the apparent agreements between simulations and observations will be strongly tested, if the bulk of current upper limits of various line ratios are turned into actual detections. We show that an increase in observational sensitivity by 0.2 dex will already start to significantly constrain the models.
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z >= 3, utilising a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman-alph a emitters recently obtained with the MUSE instrument (halo masses ~10^10-10^11 solar masses). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photo/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (~ 50 kms^-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.
We present the first characterization of the diffuse gas and metals in the circumgalactic medium of 96 z = 2.9-3.8 Ly$alpha$ emitters (LAEs) detected with the Multi-Unit Spectroscopic Explorer (MUSE) in fields centered on 8 bright background quasars as part of our MUSEQuBES survey. The LAEs have relatively low Ly$alpha$ luminosities (~$10^{42}$ erg/s) and star formation rates ~1 $M_odot$/yr, which for main sequence galaxies corresponds to stellar masses of only ~$10^{8.6}$ $M_{odot}$. The median transverse distance between the LAEs and the quasar sightlines is 165 proper kpc (pkpc). We stacked the high-resolution quasar spectra and measured significant excess HI and CIV absorption near the LAEs out to 500 km/s and at least 250 pkpc (corresponding to ~7 virial radii). At < 30 km/s from the galaxies the median HI and CIV optical depths are enhanced by an order of magnitude. The average rest-frame equivalent width of Ly$alpha$ absorption is comparable to that for Lyman-break galaxies (LBGs) at z~2.3 and ~L* galaxies at z~0.2, but considerably higher than for sub-L*/dwarf galaxies at low redshift. The CIV equivalent width is comparable to those measured for low-z dwarf galaxies and z~2.3 LBGs but significantly lower than for z~2.3 quasar-host galaxies. The absorption is significantly stronger around the ~ 1/3 of our LAEs that are part of groups, which we attribute to the large-scale structures in which they are embedded. We do not detect any strong dependence of either the HI or CIV absorption on transverse distance (over the range 50-250 pkpc), redshift, or the properties of the Ly$alpha$ emission line (luminosity, full width at half maximum, or equivalent width). However, for HI, but not CIV, the absorption at < 100 km/s from the LAE does increase with the star formation rate. This suggests that LAEs surrounded by more neutral gas tend to have higher star formation rates.
Galaxies are surrounded by extended atmospheres, which are often called the circumgalactic medium (CGM) and are the least understood part of galactic ecosystems. The CGM serves as a reservoir of both diffuse, metal-poor gas accreted from the intergal actic medium, and metal-rich gas that is either ejected from galaxies by energetic feedback or stripped from infalling satellites. As such, the CGM is empirically multi-phased and complex in dynamics. Significant progress has been made in the past decade or so in observing the cosmic-ray/B-field, as well as various phases of the CGM. But basic questions remain to be answered. First, what are the energy, mass, and metal contents of the CGM? More specifically, how are they spatially distributed and partitioned in the different components? Moreover, how are they linked to properties of host galaxies and their global clustering and intergalactic medium environments? Lastly, what are the origin, state, and life-cycle of the CGM? This question explores the dynamics of the CGM. Here we illustrate how these questions may be addressed with multi-wavelength observations of the CGM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا