ترغب بنشر مسار تعليمي؟ اضغط هنا

Indistinguishable Single-Photon Sources with Dissipative Emitter Coupled to Cascaded Cavities

161   0   0.0 ( 0 )
 نشر من قبل Hyeongrak Choi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hyeongrak Choi




اسأل ChatGPT حول البحث

Recently, Grange et al. [Phys. Rev. Lett. 114, 193601 (2015)] showed the possibility of single photon generation with high indistinguishability from a quantum emitter, despite strong pure dephasing, by `funneling emission into a photonic cavity. Here, we show that cascaded two-cavity system can further improve the photon characteristics and greatly reduce the Q-factor requirement to levels achievable with present-day technology. Our approach leverages recent advances in nanocavities with ultrasmall mode volume and does not require ultrafast excitation of the emitter. These results were obtained by numerical and closed-form analytical models with strong emitter dephasing, representing room-temperature quantum emitters.

قيم البحث

اقرأ أيضاً

The preparation of light pulses with well-defined quantum properties requires precise control at the individual photon level. Here, we demonstrate exact and controlled multi-photon subtraction from incoming light pulses. We employ a cascaded system o f tightly confined cold atom ensembles with strong, collectively enhanced coupling of photons to Rydberg states. The excitation blockade resulting from interactions between Rydberg atoms limits photon absorption to one per ensemble and engineered dephasing of the collective excitation suppresses stimulated re-emission of the photon. We experimentally demonstrate subtraction with up to three absorbers. Furthermore, we present a thorough theoretical analysis of our scheme where we identify weak Raman decay of the long-lived Rydberg state as the main source of infidelity in the subtracted photon number. We show that our scheme should scale well to higher absorber numbers if the Raman decay can be further suppressed.
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guid ed modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps and an almost completely flat topological band. Topological edge states arise on the boundaries of the system that are protected by the large gap against missing lattice sites and to the inhomogeneous broadening of emitters. These results pave the way for exploring topological many-body states in quantum optical systems.
Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-st ate emitters and ultrasmall mode volume cavities. We derive and analyze an expression for photon indistinguishability that accounts for relevant detrimental effects, such as plasmon-induced quenching and pure-dephasing. We then provide the general cavity and emitter conditions required to achieve efficient indistinguishable photon emission, and also discuss constraints due to phonon sideband emission. Using these conditions, we propose that a nanodiamond negatively charged silicon-vacancy center combined with a plasmonic-Fabry-Perot hybrid cavity is an excellent candidate system.
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existenc e of a finite rise time in the probability of excitation of the atom during the absorption event which is infinitely fast in previous Markov theories. This rise time is governed by the bandwidth of the atom-field interaction spectrum and leads to a fundamental jitter in time-stamping the absorption event. Our theoretical framework captures both the weak and strong atom-field coupling regimes and sheds light on the spectral matching between the interaction bandwidth and single photon Fock state pulse spectrum. Our work opens questions whether such jitter in the absorption event can be observed in a multi-mode realistic single photon detector. Finally, we also shed light on the fundamental differences between linear and nonlinear detector outputs for single photon Fock state vs. coherent state pulses.
Superconducting nanowire single-photon detectors promise efficient (~100%) and fast (~Gcps) detection of light at the single-photon level. They constitute one of the building blocks to realize integrated quantum optical circuits in a waveguide archit ecture. The optical response of single-photon detectors, however, is limited to measure only the presence of photons. It misses the capability to resolve the spectrum of a possible broadband illumination. In this work, we propose the optical design for a superconducting nanowire single-photon spectrometer in an integrated optical platform. We exploit a cascade of cavities with different resonance wavelengths side-coupled to a photonic crystal bus waveguide. This allows to demultiplex different wavelengths into different spatial regions, where individual superconducting nanowires that measure the presence of single photons are placed next to these cavities. We employ temporal coupled-mode theory to derive the optimal conditions to achieve a high absorption efficiency in the nanowire with fine spectral resolution. It is shown that the use of a mirror at the end of the cascaded system that terminates the photonic crystal bus waveguide increases the absorption efficiency up to unity, in principle, in the absence of loss. The expected response is demonstrated by full-wave simulations for both two-dimensional and three-dimensional structures. Absorption efficiencies of about 80% are achieved both in two-dimensional structures for four cascaded cavities and in three-dimensional structures for two cascaded cavities. The achieved spectral resolution is about 1 nm. We expect that the proposed setup, both analytically studied and numerically demonstrated in this work, offers a great impetus for future quantum nanophotonic on-chip technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا