ﻻ يوجد ملخص باللغة العربية
Recently, Grange et al. [Phys. Rev. Lett. 114, 193601 (2015)] showed the possibility of single photon generation with high indistinguishability from a quantum emitter, despite strong pure dephasing, by `funneling emission into a photonic cavity. Here, we show that cascaded two-cavity system can further improve the photon characteristics and greatly reduce the Q-factor requirement to levels achievable with present-day technology. Our approach leverages recent advances in nanocavities with ultrasmall mode volume and does not require ultrafast excitation of the emitter. These results were obtained by numerical and closed-form analytical models with strong emitter dephasing, representing room-temperature quantum emitters.
The preparation of light pulses with well-defined quantum properties requires precise control at the individual photon level. Here, we demonstrate exact and controlled multi-photon subtraction from incoming light pulses. We employ a cascaded system o
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guid
Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-st
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existenc
Superconducting nanowire single-photon detectors promise efficient (~100%) and fast (~Gcps) detection of light at the single-photon level. They constitute one of the building blocks to realize integrated quantum optical circuits in a waveguide archit