ﻻ يوجد ملخص باللغة العربية
Coronary artery calcium (CAC) is a significant marker of atherosclerosis and cardiovascular events. In this work we present a system for the automatic quantification of calcium score in ECG-triggered non-contrast enhanced cardiac computed tomography (CT) images. The proposed system uses a supervised deep learning algorithm, i.e. convolutional neural network (CNN) for the segmentation and classification of candidate lesions as coronary or not, previously extracted in the region of the heart using a cardiac atlas. We trained our network with 45 CT volumes; 18 volumes were used to validate the model and 56 to test it. Individual lesions were detected with a sensitivity of 91.24%, a specificity of 95.37% and a positive predicted value (PPV) of 90.5%; comparing calcium score obtained by the system and calcium score manually evaluated by an expert operator, a Pearson coefficient of 0.983 was obtained. A high agreement (Cohens k = 0.879) between manual and automatic risk prediction was also observed. These results demonstrated that convolutional neural networks can be effectively applied for the automatic segmentation and classification of coronary calcifications.
The quantification of the coronary artery stenosis is of significant clinical importance in coronary artery disease diagnosis and intervention treatment. It aims to quantify the morphological indices of the coronary artery lesions such as minimum lum
Coronary artery calcium (CAC) is biomarker of advanced subclinical coronary artery disease and predicts myocardial infarction and death prior to age 60 years. The slice-wise manual delineation has been regarded as the gold standard of coronary calciu
X-ray coronary angiography (XCA) is a principal approach employed for identifying coronary disorders. Deep learning-based networks have recently shown tremendous promise in the diagnosis of coronary disorder from XCA scans. A deep learning-based edge
The segmentation of coronary arteries by convolutional neural network is promising yet requires a large amount of labor-intensive manual annotations. Transferring knowledge from retinal vessels in widely-available public labeled fundus images (FIs) h
Coronary angiography is an indispensable assistive technique for cardiac interventional surgery. Segmentation and extraction of blood vessels from coronary angiography videos are very essential prerequisites for physicians to locate, assess and diagn