ﻻ يوجد ملخص باللغة العربية
X-ray coronary angiography (XCA) is a principal approach employed for identifying coronary disorders. Deep learning-based networks have recently shown tremendous promise in the diagnosis of coronary disorder from XCA scans. A deep learning-based edge adaptive instance normalization style transfer technique for segmenting the coronary arteries, is presented in this paper. The proposed technique combines adaptive instance normalization style transfer with the dense extreme inception network and convolution block attention module to get the best artery segmentation performance. We tested the proposed method on two publicly available XCA datasets, and achieved a segmentation accuracy of 0.9658 and Dice coefficient of 0.71. We believe that the proposed method shows that the prediction can be completed in the fastest time with training on the natural images, and can be reliably used to diagnose and detect coronary disorders.
Coronary angiography is an indispensable assistive technique for cardiac interventional surgery. Segmentation and extraction of blood vessels from coronary angiography videos are very essential prerequisites for physicians to locate, assess and diagn
Vessel stenosis is a major risk factor in cardiovascular diseases (CVD). To analyze the degree of vessel stenosis for supporting the treatment management, extraction of coronary artery area from Computed Tomographic Angiography (CTA) is regarded as a
The segmentation of coronary arteries by convolutional neural network is promising yet requires a large amount of labor-intensive manual annotations. Transferring knowledge from retinal vessels in widely-available public labeled fundus images (FIs) h
Coronary artery disease (CAD) is the most common cause of death globally, and its diagnosis is usually based on manual myocardial segmentation of Magnetic Resonance Imaging (MRI) sequences. As the manual segmentation is tedious, time-consuming and wi
The quantification of the coronary artery stenosis is of significant clinical importance in coronary artery disease diagnosis and intervention treatment. It aims to quantify the morphological indices of the coronary artery lesions such as minimum lum