ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronary Artery Segmentation in Angiographic Videos Using A 3D-2D CE-Net

105   0   0.0 ( 0 )
 نشر من قبل Lu Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Coronary angiography is an indispensable assistive technique for cardiac interventional surgery. Segmentation and extraction of blood vessels from coronary angiography videos are very essential prerequisites for physicians to locate, assess and diagnose the plaques and stenosis in blood vessels. This article proposes a new video segmentation framework that can extract the clearest and most comprehensive coronary angiography images from a video sequence, thereby helping physicians to better observe the condition of blood vessels. This framework combines a 3D convolutional layer to extract spatial--temporal information from a video sequence and a 2D CE--Net to accomplish the segmentation task of an image sequence. The input is a few continuous frames of angiographic video, and the output is a mask of segmentation result. From the results of segmentation and extraction, we can get good segmentation results despite the poor quality of coronary angiography video sequences.



قيم البحث

اقرأ أيضاً

The reconstruction of three-dimensional models of coronary arteries is of great significance for the localization, evaluation and diagnosis of stenosis and plaque in the arteries, as well as for the assisted navigation of interventional surgery. In t he clinical practice, physicians use a few angles of coronary angiography to capture arterial images, so it is of great practical value to perform 3D reconstruction directly from coronary angiography images. However, this is a very difficult computer vision task due to the complex shape of coronary blood vessels, as well as the lack of data set and key point labeling. With the rise of deep learning, more and more work is being done to reconstruct 3D models of human organs from medical images using deep neural networks. We propose an adversarial and generative way to reconstruct three dimensional coronary artery models, from two different views of angiographic images of coronary arteries. With 3D fully supervised learning and 2D weakly supervised learning schemes, we obtained reconstruction accuracies that outperform state-of-art techniques.
Vessel stenosis is a major risk factor in cardiovascular diseases (CVD). To analyze the degree of vessel stenosis for supporting the treatment management, extraction of coronary artery area from Computed Tomographic Angiography (CTA) is regarded as a key procedure. However, manual segmentation by cardiologists may be a time-consuming task, and present a significant inter-observer variation. Although various computer-aided approaches have been developed to support segmentation of coronary arteries in CTA, the results remain unreliable due to complex attenuation appearance of plaques, which are the cause of the stenosis. To overcome the difficulties caused by attenuation ambiguity, in this paper, a 3D multi-channel U-Net architecture is proposed for fully automatic 3D coronary artery reconstruction from CTA. Other than using the original CTA image, the main idea of the proposed approach is to incorporate the vesselness map into the input of the U-Net, which serves as the reinforcing information to highlight the tubular structure of coronary arteries. The experimental results show that the proposed approach could achieve a Dice Similarity Coefficient (DSC) of 0.8 in comparison to around 0.6 attained by previous CNN approaches.
83 - Li Chen , Yanjun Xie , Jie Sun 2017
Automated segmentation of intracranial arteries on magnetic resonance angiography (MRA) allows for quantification of cerebrovascular features, which provides tools for understanding aging and pathophysiological adaptations of the cerebrovascular syst em. Using a convolutional autoencoder (CAE) for segmentation is promising as it takes advantage of the autoencoder structure in effective noise reduction and feature extraction by representing high dimensional information with low dimensional latent variables. In this report, an optimized CAE model (Y-net) was trained to learn a 3D segmentation model of intracranial arteries from 49 cases of MRA data. The trained model was shown to perform better than the three traditional segmentation methods in both binary classification and visual evaluation.
The segmentation of coronary arteries by convolutional neural network is promising yet requires a large amount of labor-intensive manual annotations. Transferring knowledge from retinal vessels in widely-available public labeled fundus images (FIs) h as a potential to reduce the annotation requirement for coronary artery segmentation in X-ray angiograms (XAs) due to their common tubular structures. However, it is challenged by the cross-anatomy domain shift due to the intrinsically different vesselness characteristics in different anatomical regions under even different imaging protocols. To solve this problem, we propose a Semi-Supervised Cross-Anatomy Domain Adaptation (SS-CADA) which requires only limited annotations for coronary arteries in XAs. With the supervision from a small number of labeled XAs and publicly available labeled FIs, we propose a vesselness-specific batch normalization (VSBN) to individually normalize feature maps for them considering their different cross-anatomic vesselness characteristics. In addition, to further facilitate the annotation efficiency, we employ a self-ensembling mean-teacher (SEMT) to exploit abundant unlabeled XAs by imposing a prediction consistency constraint. Extensive experiments show that our SS-CADA is able to solve the challenging cross-anatomy domain shift, achieving accurate segmentation for coronary arteries given only a small number of labeled XAs.
The quantification of the coronary artery stenosis is of significant clinical importance in coronary artery disease diagnosis and intervention treatment. It aims to quantify the morphological indices of the coronary artery lesions such as minimum lum en diameter, reference vessel diameter, lesion length, and these indices are the reference of the interventional stent placement. In this study, we propose a direct multiview quantitative coronary angiography (DMQCA) model as an automatic clinical tool to quantify the coronary artery stenosis from X-ray coronary angiography images. The proposed DMQCA model consists of a multiview module with two attention mechanisms, a key-frame module, and a regression module, to achieve direct accurate multiple-index estimation. The multi-view module comprehensively learns the Spatio-temporal features of coronary arteries through a three-dimensional convolution. The attention mechanisms of each view focus on the subtle feature of the lesion region and capture the important context information. The key-frame module learns the subtle features of the stenosis through successive dilated residual blocks. The regression module finally generates the indices estimation from multiple features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا