ترغب بنشر مسار تعليمي؟ اضغط هنا

Softening Higgs Naturalness - an EFT Analysis

168   0   0.0 ( 0 )
 نشر من قبل Shaouly Bar-Shalom
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate naturalness in the Standard Model (SM) Higgs sector using effective field theory (EFT) techniques and find the requirements on the new heavy physics that can potentially cure the little hierarchy problem below a scale $Lambda gg O(1 ~{rm TeV})$, assuming the new heavy particles have a mass larger than $ Lambda $. In particular, we determine the conditions under which the 1-loop corrections to $ m_h $ from the heavy new physics can balance those created by SM loop effects up to the naturalness scale $Lambda$, a condition we denote by EFT Naturalness. We obtain the higher dimensional ($n ge 5$) operators in the effective Lagrangian that can lead to EFT Naturalness, and classify the underlying heavy theories that can generate such operators at tree-level. We also address the experimental constraints on our EFT Naturalness setup and discuss the expected experimental signals of the new heavy physics associated with EFT Naturalness.

قيم البحث

اقرأ أيضاً

Assuming the presence of physics beyond the Standard Model (SM) with a characteristic scale M ~ O(10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1-lo op EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine the constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Lambda < M, a condition we denote by EFT-naturalness. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Examining the Higgs sector at high energy scales through off-shell Higgs production can potentially shed light on the naturalness problem of the Higgs mass. We propose such a study at the LHC by utilizing a representative model with a new scalar fiel d ($S$) coupled to the Standard Model Higgs doublet ($H$) in a form $ |S|^2 |H|^2$. In the process $p p rightarrow h^* rightarrow ZZ$, the dominant momentum-dependent part of the one-loop scalar singlet corrections, especially above the new threshold at $2m_S$, leads to a measurable deviation in the differential distribution of the $Z$-pair invariant mass, in accordance with the quadratic divergence cancellation to the Higgs mass. We find that it is conceivable to probe such new physics at the $5sigma$ level at the high-luminosity LHC, improving further with the upgraded $27$ TeV LHC, without requiring the precise measurement of the Higgs boson total width. The discovery of such a Higgs portal could also have important implications for thermal dark matter as well as for electroweak baryogenesis.
The Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a cl ass of neutral naturalness models, in which the Higgs boson is a pseudo-Goldstone boson from the universal SO(N)/SO(N-1) coset structure. Integrating out the radial mode from the spontaneous global symmetry breaking, we obtain various dimension-six operators in the Standard Model effective field theory, and calculate the low energy Higgs effective potential with radiative corrections included. We perform a chi-square fit to the Higgs coupling precision measurements at current and future colliders and show that the new physics scale could be explored up to 2.7 (2.8) TeV without (with) the Higgs invisible decay channels at future Higgs factories.
Constraining CP-violating interactions in effective field theory (EFT) of dimension six faces two challenges. Firstly, degeneracies in the multi-dimensional space of Wilson coefficients have to be lifted. Secondly, quadratic contributions of CP-odd d imension six operators are difficult to disentangle from squared contributions of CP-even dimension six operators and from linear contributions of dimension eight operators. Both of these problems are present when new sources of CP-violation are present in the interactions between the Higgs boson and heavy strongly-interacting fermions. We show that degeneracies in the Wilson coefficients can be removed by combining measurements of Higgs-plus-two-jet production via gluon fusion with measurements of top-pair associated Higgs production. In addition, we demonstrate that the sensitivity of the analysis can be improved by exploiting the top-quark threshold in the gluon fusion process. Finally, we substantiate a perturbative argument about the validity of EFT by comparing the quadratic and linear contributions from CP-odd dimension six operators and use this to show explicitly that high statistics measurements at future colliders enable the extraction of perturbatively robust constraints on the associated Wilson coefficients.
The cross section for coherent elastic neutrino-nucleus scattering (CE$ u$NS) depends on the response of the target nucleus to the external current, in the Standard Model (SM) mediated by the exchange of a $Z$ boson. This is typically subsumed into a n object called the weak form factor of the nucleus. Here, we provide results for this form factor calculated using the large-scale nuclear shell model for a wide range of nuclei of relevance for current CE$ u$NS experiments, including cesium, iodine, argon, fluorine, sodium, germanium, and xenon. In addition, we provide the responses needed to capture the axial-vector part of the cross section, which does not scale coherently with the number of neutrons, but may become relevant for the SM prediction of CE$ u$NS on target nuclei with nonzero spin. We then generalize the formalism allowing for contributions beyond the SM. In particular, we stress that in this case, even for vector and axial-vector operators, the standard weak form factor does not apply anymore, but needs to be replaced by the appropriate combination of the underlying nuclear structure factors. We provide the corresponding expressions for vector, axial-vector, but also (pseudo-)scalar, tensor, and dipole effective operators, including two-body-current effects as predicted from chiral effective field theory. Finally, we update the spin-dependent structure factors for dark matter scattering off nuclei according to our improved treatment of the axial-vector responses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا