ﻻ يوجد ملخص باللغة العربية
We consider the production of four charged leptons in hadron collisions and compute the next-to-leading order (NLO) QCD corrections to the loop-induced gluon fusion contribution by consistently accounting for the Higgs boson signal, its corresponding background and their interference. The contribution from heavy-quark loops is exactly included in the calculation except for the two-loop $ggto ZZto 4ell$ continuum diagrams, for which the unknown heavy-quark effects are approximated through a reweighting procedure. Our calculation is combined with the next-to-next-to-leading order QCD and NLO electroweak corrections to the $qbar{q}to4ell$ process, including all partonic channels and consistently accounting for spin correlations and off-shell effects. The computation is implemented in the MATRIX framework and allows us to separately study the Higgs boson signal, the background and the interference contributions, whose knowledge can be used to constrain the Higgs boson width through off-shell measurements. Our state-of-the-art predictions for the invariant-mass distribution of the four leptons are in good agreement with recent ATLAS data.
Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leadi
We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD
We analyze soft and collinear gluon resummation effects at the N$^3$LL level for Standard Model Higgs boson production via gluon fusion $ggto H$ and the neutral scalar and pseudoscalar Higgs bosons of the minimal supersymmetric extension at the N$^3$
We present the calculation of the full next-to-leading order (NLO) QCD corrections to Higgs boson pair production via gluon fusion at the LHC, including the exact top-mass dependence in the two-loop virtual and one-loop real corrections. This is the
Measuring the polarization of electroweak bosons at the LHC allows for important tests of the electroweak-symmetry-breaking mechanism that is realized in nature. Therefore, precise Standard Model predictions are needed for the production of polarized