ترغب بنشر مسار تعليمي؟ اضغط هنا

From Lagrangian mechanics to nonequilibrium thermodynamics: a variational perspective

124   0   0.0 ( 0 )
 نشر من قبل Fran\\c{c}ois Gay-Balmaz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we survey our recent results on the variational formulation of nonequilibrium thermodynamics for the finite dimensional case of discrete systems as well as for the infinite dimensional case of continuum systems. Starting with the fundamental variational principle of classical mechanics, namely, Hamiltons principle, we show, with the help of thermodynamic systems with gradually increasing level complexity, how to systematically extend it to include irreversible processes. In the finite dimensional cases, we treat systems experiencing the irreversible processes of mechanical friction, heat and mass transfer, both in the adiabatically closed and in the open cases. On the continuum side, we illustrate our theory with the example of multicomponent Navier-Stokes-Fourier systems.



قيم البحث

اقرأ أيضاً

In this paper, we present a Lagrangian formalism for nonequilibrium thermodynamics. This formalism is an extension of the Hamilton principle in classical mechanics that allows the inclusion of irreversible phenomena in both discrete and continuum sys tems (i.e., systems with finite and infinite degrees of freedom). The irreversibility is encoded into a nonlinear nonholonomic constraint given by the expression of entropy production associated to all the irreversible processes involved. Hence from a mathematical point of view, our variational formalism may be regarded as a generalization of the Lagrange-dAlembert principle used in nonholonomic mechanics. In order to formulate the nonholonomic constraint, we associate to each irreversible process a variable called the thermodynamic displacement. This allows the definition of a corresponding variational constraint. Our theory is illustrated with various examples of discrete systems such as mechanical systems with friction, matter transfer, electric circuits, chemical reactions, and diffusion across membranes. For the continuum case, the variational formalism is naturally extended to the setting of infinite dimensional nonholonomic Lagrangian systems and is expressed in material representation, while its spatial version is obtained via a nonholonomic Lagrangian reduction by symmetry. In the continuum case, our theory is systematically illustrated by the example of a multicomponent viscous heat conducting fluid with chemical reactions and mass transfer.
A variational formulation for nonequilibrium thermodynamics was recently proposed in cite{GBYo2017a,GBYo2017b} for both discrete and continuum systems. This formulation extends the Hamilton principle of classical mechanics to include irreversible pro cesses. In this paper, we show that this variational formulation yields a constructive and systematic way to derive from a unified perspective several bracket formulations for nonequilibrium thermodynamics proposed earlier in the literature, such as the single generator bracket and the double generator bracket. In the case of a linear relation between the thermodynamic fluxes and the thermodynamic forces, the metriplectic or GENERIC bracket is recovered. We also show how the processes of reduction by symmetry can be applied to these brackets. In the reduced setting, we also consider the case in which the coadjoint orbits are preserved and explain the link with double bracket dissipation. A similar development has been presented for continuum systems in cite{ElGB2019} and applied to multicomponent fluids.
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, f or any Lagrangian system with $m$ commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the $(m+1)$-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with $m$ commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
The main result of this note is a characterization of the Poisson commutativity of Hamilton functions in terms of their principal action functions.
In this paper, we introduce the notion of port-Lagrangian systems in nonequilibrium thermodynamics, which is constructed by generalizing the notion of port-Lagrangian systems for nonholonomic mechanics proposed in Yoshimura and Marsden [2006c], where the notion of interconnections is described in terms of Dirac structures. The notion of port-Lagrangian systems in nonequilibrium thermodynamics is deduced from the variational formulation of nonequilibrium thermodynamics developed in Gay-Balmaz and Yoshimura [2017a,2017b]. It is a type of Lagrange-dAlembert principle associated to a specific class of nonlinear nonholonomic constraints, called phenomenological constraints, which are associated to the entropy production equation of the system. To these phenomenological constraints are systematically associated variational constraints, which need to be imposed on the variations considered in the principle. In this paper, by specifically focusing on the cases of simple thermodynamic systems with constraints, we show how the interconnections in thermodynamics can be also described by Dirac structures on the Pontryagin bundle as well as on the cotangent bundle of the thermodynamic configuration space. Each of these Dirac structures is induced from the variational constraint. Furthermore, the variational structure associated to this Dirac formulation is presented in the context of the Lagrange-dAlembert-Pontryagin principle. We illustrate our theory with some examples such as a cylinder-piston with ideal gas as well as an LCR circuit with entropy production due to a resistor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا