ﻻ يوجد ملخص باللغة العربية
In $mathcal N geq 2$ superconformal Chern-Simons-matter theories we construct the infinite family of Bogomolnyi-Prasad-Sommerfield (BPS) Wilson loops featured by constant parametric couplings to scalar and fermion matter, including both line Wilson loops in Minkowski spacetime and circle Wilson loops in Euclidean space. We find that the connection of the most general BPS Wilson loop cannot be decomposed in terms of double-node connections. Moreover, if the quiver contains triangles, it cannot be interpreted as a supermatrix inside a superalgebra. However, for particular choices of the parameters it reduces to the well-known connections of 1/6 BPS Wilson loops in Aharony-Bergman-Jafferis-Maldacena (ABJM) theory and 1/4 BPS Wilson loops in $mathcal N = 4$ orbifold ABJM theory. In the particular case of $mathcal N = 2$ orbifold ABJM theory we identify the gravity duals of a subset of operators. We investigate the cohomological equivalence of fermionic and bosonic BPS Wilson loops at quantum level by studying their expectation values, and find strong evidence that the cohomological equivalence holds quantum mechanically, at framing one. Finally, we discuss a stronger formulation of the cohomological equivalence, which implies non-trivial identities for correlation functions of composite operators in the defect CFT defined on the Wilson contour and allows to make novel predictions on the corresponding unknown integrals that call for a confirmation.
We construct new families of 1/4 BPS Wilson loops in circular quiver $mathcal N=4$ superconformal Chern-Simons-matter (SCSM) theories in three dimensions. They are defined as the holonomy of superconnections that contain non-trivial couplings to scal
We study the algebra of BPS Wilson loops in 3d gauge theories with N=2 supersymmetry and Chern-Simons terms. We argue that new relations appear on the quantum level, and that in many cases this makes the algebra finite-dimensional. We use our results
This is a compact review of recent results on supersymmetric Wilson loops in ABJ(M) and related theories. It aims to be a quick introduction to the state of the art in the field and a discussion of open problems. It is divided into short chapters dev
We consider the 1/2 BPS circular Wilson loop in a generic N=2 SU(N) SYM theory with conformal matter content. We study its vacuum expectation value, both at finite $N$ and in the large-N limit, using the interacting matrix model provided by localizat
Aharony, Bergman, Jafferis and Maldacena have recently proposed a dual gravitational description for a family of superconformal Chern Simons theories in three spacetime dimensions. In this note we perform the one loop computation that determines the