ﻻ يوجد ملخص باللغة العربية
We propose a new way of explaining the observed Higgs mass, within the cosmological relaxation framework. The key feature distinguishing it from other scanning scenarios is that the scanning field has a non-canonical kinetic term, whose role is to terminate the scan around the desired Higgs mass value. We propose a concrete realisation of this idea with two new singlet fields, one that scans the Higgs mass, and another that limits the time window in which the scan is possible. Within the provided time period, the scanning field does not significantly evolve after the Higgs field gets close to the Standard Model value, due to particle production friction.
We explore non-standard Higgs phenomenology in the Gaugephobic Higgs model in which the Higgs can be lighter than the usually quoted current experimental bound. The Higgs propagates in the bulk of a 5D space-time and Electroweak Symmetry Breaking occ
We summarize the possible processes which may be used to search for a Higgs boson, of mass in the range 114-130 GeV, at the LHC. We discuss, in detail, two processes with rapidity gaps: exclusive Higgs production with tagged outgoing protons and prod
The data taken in Run II at the LHC have started to probe Higgs boson production at high transverse momentum. Future data will provide a large sample of events with boosted Higgs boson topologies, allowing for a detailed understanding of electroweak
Within the supersymmetric SO(10) grand unified theory (GUT), a new mechanism, giving the light Higgs doublet as a pseudo-Goldstone mode, is suggested. Realizing this mechanism, we present an explicit model with fully realistic phenomenology. In parti
The zero-width approximation (ZWA) restricts the intermediate unstable particle state to the mass shell and, when combined with the decorrelation approximation, fully factorizes the production and decay of unstable particles. The ZWA uncertainty is e