ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of Extra Dimensions from Upsilon Decays with a Light Gaugephobic Higgs Boson

172   0   0.0 ( 0 )
 نشر من قبل John McRaven
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore non-standard Higgs phenomenology in the Gaugephobic Higgs model in which the Higgs can be lighter than the usually quoted current experimental bound. The Higgs propagates in the bulk of a 5D space-time and Electroweak Symmetry Breaking occurs by a combination of boundary conditions in the extra dimension and an elementary Higgs. The Higgs can thus have a significantly suppressed coupling to the other Standard Model fields. A large enough suppression can be found to escape all limits and allow for a Higgs of any mass, which would be associated with the discovery of W and Z Kaluza-Klein resonances at the LHC. The Higgs can be precisely discovered at B-factories while the LHC would be insensitive to it due to high backgrounds. In this letter we study the Higgs discovery mode in Upsilon(3S), Upsilon(2S), and Upsilon(1S) decays, and the model parameter space that will be probed by BaBar, Belle, and CLEO data. In the absence of an early discovery of a heavy Higgs at the LHC, A Super-B factory would be an excellent option to further probe this region.



قيم البحث

اقرأ أيضاً

114 - M.A. Sanchis-Lozano 2002
Leptonic decays of vector-states of bottomonium are analized searching for a light pseudoscalar Higgs-like neutral boson manifesting via an apparent breaking of lepton universality.
We search for hadronic decays of a light Higgs boson (A0) produced in radiative decays of an Upsilon(2S) or Upsilon(3S) meson, Upsilon --> gamma A0. The data have been recorded by the BABAR experiment at the Upsilon(3S) and Upsilon(2S) center of mass energies, and include (121.3 pm 1.2) x 10^6 Upsilon(3S) and (98.3 pm 0.9) x 10^6 Upsilon(2S) mesons. No significant signal is observed. We set 90% confidence level upper limits on the product branching fractions B(Upsilon(nS)-->gamma A0) x B(A0-->hadrons) (n=2 or 3) that range from 1 x 10^{-6} for an A0 mass of 0.3 GeV/c^2 to 8 x 10^{-5} at 7 GeV/c^2.
We propose a new way of explaining the observed Higgs mass, within the cosmological relaxation framework. The key feature distinguishing it from other scanning scenarios is that the scanning field has a non-canonical kinetic term, whose role is to te rminate the scan around the desired Higgs mass value. We propose a concrete realisation of this idea with two new singlet fields, one that scans the Higgs mass, and another that limits the time window in which the scan is possible. Within the provided time period, the scanning field does not significantly evolve after the Higgs field gets close to the Standard Model value, due to particle production friction.
We show the bounds on five- and six-dimensional Universal Extra Dimension models from the result of the Higgs boson searches at the Large Hadron Collider and electroweak precision measurement. The latest data released by the ATLAS and the CMS gives t he lower bounds on Kaluza-Klein scale which are from 650 GeV to 1350 GeV depending on models from Higgs to diboson/diphoton decay signal. The Higgs production cross section can be enhanced by factor 1.5 in crude estimation, diphoton decay signal is suppressed about 10%. Electroweak precision measurement also gives the lower bounds as from 700 GeV to 1500 GeV.
Higgs signatures from the cascade decays of light stops are an interesting possibility in the next to minimal supersymmetric standard model (NMSSM). We investigate the potential reach of the light stop mass at the 13 TeV run of the LHC by means of fi ve NMSSM benchmark points where this signature is dominant. These benchmark points are compatible with current Higgs coupling measurements, LHC constraints, dark matter relic density and direct detection constraints. We consider single and di-lepton search strategies, as well as the jet-substructure technique to reconstruct the Higgs bosons. We find that one can probe stop masses up to 1.2 TeV with 300 $rm fb^{-1}$ luminosity via the di-lepton channel, while with the jet-substructure method, stop masses up to 1 TeV can be probed with 300 $rm fb^{-1}$ luminosity. We also investigate the possibility of the appearance of multiple Higgs peaks over the background in the fat-jet mass distribution, and conclude that such a possibility is viable only at the high luminosity run of 13 TeV LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا