ﻻ يوجد ملخص باللغة العربية
The zero-width approximation (ZWA) restricts the intermediate unstable particle state to the mass shell and, when combined with the decorrelation approximation, fully factorizes the production and decay of unstable particles. The ZWA uncertainty is expected to be of O(Gamma/M), where M and Gamma are the mass and width of the unstable particle. We review the ZWA and demonstrate that errors can be much larger than expected if a significant modification of the Breit-Wigner lineshape occurs. A thorough examination of the recently discovered candidate Standard Model Higgs boson is in progress. For M_H ~ 125 GeV, one has Gamma_H/M_H < 10^(-4), which suggests an excellent accuracy of the ZWA. We show that this is not always the case. The inclusion of off-shell contributions is essential to obtain an accurate Higgs signal normalization at the 1% precision level. For gg -> H -> VV, V = W,Z, O(5-10%) corrections occur due to an enhanced Higgs signal in the region M_VV > 2 M_V, where also sizable Higgs-continuum interference occurs. We discuss how experimental selection cuts can be used to suppress this region in search channels where the Higgs mass cannot be reconstructed. We note that H -> VV decay modes in non-gluon-fusion channels are similarly affected.
In the Higgs search at the LHC, a light Higgs boson (115 GeV <~ M_H <~ 130 GeV) is not excluded by experimental data. In this mass range, the width of the Standard Model Higgs boson is more than four orders of magnitude smaller than its mass. The zer
We demonstrate that the multi-top productions efficiently probe the CP-property of top-Higgs interaction and the Higgs-boson width at the LHC. The four top-quark production alone can exclude a purely CP-odd top-quark Yukawa coupling at the 13~TeV LHC
As one of the key properties of the Higgs boson, the Higgs total width is sensitive to global profile of the Higgs boson couplings, and thus new physics would modify the Higgs width. We investigate the total width in various new physics models, inclu
Natural Next-to-Minimal Supersymmetric Standard Model (nNMSSM) is featured by predicting one CP-even Higgs boson satisfying $m_{h_1} lesssim 120 ,{rm GeV}$ and Higgsinos lighter than about 300 GeV, and consequently the cross section for DM-nucleon sc
We study the Higgs boson $(h)$ decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet ($j$) represents any non-flavor tagged jet from the observational point of view. The decay mode $hto gg$ is chosen as the benchmark s