ترغب بنشر مسار تعليمي؟ اضغط هنا

Collaborative Service Caching for Edge Computing in Dense Small Cell Networks

120   0   0.0 ( 0 )
 نشر من قبل Lixing Chen
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the proximity of data sources, thereby reducing service provision latency and saving backhaul network bandwidth. Although computation offloading has been extensively studied in the literature, service caching is an equally, if not more, important design topic of MEC, yet receives much less attention. Service caching refers to caching application services and their related data (libraries/databases) in the edge server, e.g. MEC-enabled Base Station (BS), enabling corresponding computation tasks to be executed. Since only a small number of services can be cached in resource-limited edge server at the same time, which services to cache has to be judiciously decided to maximize the system performance. In this paper, we investigate collaborative service caching in MEC-enabled dense small cell (SC) networks. We propose an efficient decentralized algorithm, called CSC (Collaborative Service Caching), where a network of small cell BSs optimize service caching collaboratively to address a number of key challenges in MEC systems, including service heterogeneity, spatial demand coupling, and decentralized coordination. Our algorithm is developed based on parallel Gibbs sampling by exploiting the special structure of the considered problem using graphing coloring. The algorithm significantly improves the time efficiency compared to conventional Gibbs sampling, yet guarantees provable convergence and optimality. CSC is further extended to the SC network with selfish BSs, where a coalitional game is formulated to incentivize collaboration. A coalition formation algorithm is developed by employing the merge-and-split rules and ensures the stability of the SC coalitions.



قيم البحث

اقرأ أيضاً

255 - Lixing Chen , Jie Xu 2017
Small cell base stations (SBSs) endowed with cloud-like computing capabilities are considered as a key enabler of edge computing (EC), which provides ultra-low latency and location-awareness for a variety of emerging mobile applications and the Inter net of Things. However, due to the limited computation resources of an individual SBS, providing computation services of high quality to its users faces significant challenges when it is overloaded with an excessive amount of computation workload. In this paper, we propose collaborative edge computing among SBSs by forming SBS coalitions to share computation resources with each other, thereby accommodating more computation workload in the edge system and reducing reliance on the remote cloud. A novel SBS coalition formation algorithm is developed based on the coalitional game theory to cope with various new challenges in small-cell-based edge systems, including the co-provisioning of radio access and computing services, cooperation incentives, and potential security risks. To address these challenges, the proposed method (1) allows collaboration at both the user-SBS association stage and the SBS peer offloading stage by exploiting the ultra dense deployment of SBSs, (2) develops a payment-based incentive mechanism that implements proportionally fair utility division to form stable SBS coalitions, and (3) builds a social trust network for managing security risks among SBSs due to collaboration. Systematic simulations in practical scenarios are carried out to evaluate the efficacy and performance of the proposed method, which shows that tremendous edge computing performance improvement can be achieved.
139 - Lixing Chen , Sheng Zhou , Jie Xu 2017
The (ultra-)dense deployment of small-cell base stations (SBSs) endowed with cloud-like computing functionalities paves the way for pervasive mobile edge computing (MEC), enabling ultra-low latency and location-awareness for a variety of emerging mob ile applications and the Internet of Things. To handle spatially uneven computation workloads in the network, cooperation among SBSs via workload peer offloading is essential to avoid large computation latency at overloaded SBSs and provide high quality of service to end users. However, performing effective peer offloading faces many unique challenges in small cell networks due to limited energy resources committed by self-interested SBS owners, uncertainties in the system dynamics and co-provisioning of radio access and computing services. This paper develops a novel online SBS peer offloading framework, called OPEN, by leveraging the Lyapunov technique, in order to maximize the long-term system performance while keeping the energy consumption of SBSs below individual long-term constraints. OPEN works online without requiring information about future system dynamics, yet provides provably near-optimal performance compared to the oracle solution that has the complete future information. In addition, this paper formulates a novel peer offloading game among SBSs, analyzes its equilibrium and efficiency loss in terms of the price of anarchy in order to thoroughly understand SBSs strategic behaviors, thereby enabling decentralized and autonomous peer offloading decision making. Extensive simulations are carried out and show that peer offloading among SBSs dramatically improves the edge computing performance.
We consider the problem of video caching across a set of 5G small-cell base stations (SBS) connected to each other over a high-capacity short-delay back-haul link, and linked to a remote server over a long-delay connection. Even though the problem of minimizing the overall video delivery delay is NP-hard, the Collaborative Caching Algorithm (CCA) that we present can efficiently compute a solution close to the optimal, where the degree of sub-optimality depends on the worst case video-to-cache size ratio. The algorithm is naturally amenable to distributed implementation that requires zero explicit coordination between the SBSs, and runs in $O(N + K log K)$ time, where $N$ is the number of SBSs (caches) and $K$ the maximum number of videos. We extend CCA to an online setting where the video popularities are not known a priori but are estimated over time through a limited amount of periodic information sharing between SBSs. We demonstrate that our algorithm closely approaches the optimal integral caching solution as the cache size increases. Moreover, via simulations carried out on real video access traces, we show that our algorithm effectively uses the SBS caches to reduce the video delivery delay and conserve the remote servers bandwidth, and that it outperforms two other reference caching methods adapted to our system setting.
Recently, Mobile-Edge Computing (MEC) has arisen as an emerging paradigm that extends cloud-computing capabilities to the edge of the Radio Access Network (RAN) by deploying MEC servers right at the Base Stations (BSs). In this paper, we envision a c ollaborative joint caching and processing strategy for on-demand video streaming in MEC networks. Our design aims at enhancing the widely used Adaptive BitRate (ABR) streaming technology, where multiple bitra
This paper investigates learning-based caching in small-cell networks (SCNs) when user preference is unknown. The goal is to optimize the cache placement in each small base station (SBS) for minimizing the system long-term transmission delay. We mode l this sequential multi-agent decision making problem in a multi-agent multi-armed bandit (MAMAB) perspective. Rather than estimating user preference first and then optimizing the cache strategy, we propose several MAMAB-based algorithms to directly learn the cache strategy online in both stationary and non-stationary environment. In the stationary environment, we first propose two high-complexity agent-based collaborative MAMAB algorithms with performance guarantee. Then we propose a low-complexity distributed MAMAB which ignores the SBS coordination. To achieve a better balance between SBS coordination gain and computational complexity, we develop an edge-based collaborative MAMAB with the coordination graph edge-based reward assignment method. In the non-stationary environment, we modify the MAMAB-based algorithms proposed in the stationary environment by proposing a practical initialization method and designing new perturbed terms to adapt to the dynamic environment. Simulation results are provided to validate the effectiveness of our proposed algorithms. The effects of different parameters on caching performance are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا