ﻻ يوجد ملخص باللغة العربية
This paper investigates learning-based caching in small-cell networks (SCNs) when user preference is unknown. The goal is to optimize the cache placement in each small base station (SBS) for minimizing the system long-term transmission delay. We model this sequential multi-agent decision making problem in a multi-agent multi-armed bandit (MAMAB) perspective. Rather than estimating user preference first and then optimizing the cache strategy, we propose several MAMAB-based algorithms to directly learn the cache strategy online in both stationary and non-stationary environment. In the stationary environment, we first propose two high-complexity agent-based collaborative MAMAB algorithms with performance guarantee. Then we propose a low-complexity distributed MAMAB which ignores the SBS coordination. To achieve a better balance between SBS coordination gain and computational complexity, we develop an edge-based collaborative MAMAB with the coordination graph edge-based reward assignment method. In the non-stationary environment, we modify the MAMAB-based algorithms proposed in the stationary environment by proposing a practical initialization method and designing new perturbed terms to adapt to the dynamic environment. Simulation results are provided to validate the effectiveness of our proposed algorithms. The effects of different parameters on caching performance are also discussed.
By exploiting the computing power and local data of distributed clients, federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy. In each communication round of FL, the clients up
Next-generation networks are expected to be ultra-dense with a very high peak rate but relatively lower expected traffic per user. For such scenario, existing central controller based resource allocation may incur substantial signaling (control commu
Setting up the future Internet of Things (IoT) networks will require to support more and more communicating devices. We prove that intelligent devices in unlicensed bands can use Multi-Armed Bandit (MAB) learning algorithms to improve resource exploi
We consider the problem of video caching across a set of 5G small-cell base stations (SBS) connected to each other over a high-capacity short-delay back-haul link, and linked to a remote server over a long-delay connection. Even though the problem of
In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain conditi