ترغب بنشر مسار تعليمي؟ اضغط هنا

Collaborative Multi-Agent Multi-Armed Bandit Learning for Small-Cell Caching

120   0   0.0 ( 0 )
 نشر من قبل Xianzhe Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates learning-based caching in small-cell networks (SCNs) when user preference is unknown. The goal is to optimize the cache placement in each small base station (SBS) for minimizing the system long-term transmission delay. We model this sequential multi-agent decision making problem in a multi-agent multi-armed bandit (MAMAB) perspective. Rather than estimating user preference first and then optimizing the cache strategy, we propose several MAMAB-based algorithms to directly learn the cache strategy online in both stationary and non-stationary environment. In the stationary environment, we first propose two high-complexity agent-based collaborative MAMAB algorithms with performance guarantee. Then we propose a low-complexity distributed MAMAB which ignores the SBS coordination. To achieve a better balance between SBS coordination gain and computational complexity, we develop an edge-based collaborative MAMAB with the coordination graph edge-based reward assignment method. In the non-stationary environment, we modify the MAMAB-based algorithms proposed in the stationary environment by proposing a practical initialization method and designing new perturbed terms to adapt to the dynamic environment. Simulation results are provided to validate the effectiveness of our proposed algorithms. The effects of different parameters on caching performance are also discussed.



قيم البحث

اقرأ أيضاً

By exploiting the computing power and local data of distributed clients, federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy. In each communication round of FL, the clients up date local models based on their own data and upload their local updates via wireless channels. However, latency caused by hundreds to thousands of communication rounds remains a bottleneck in FL. To minimize the training latency, this work provides a multi-armed bandit-based framework for online client scheduling (CS) in FL without knowing wireless channel state information and statistical characteristics of clients. Firstly, we propose a CS algorithm based on the upper confidence bound policy (CS-UCB) for ideal scenarios where local datasets of clients are independent and identically distributed (i.i.d.) and balanced. An upper bound of the expected performance regret of the proposed CS-UCB algorithm is provided, which indicates that the regret grows logarithmically over communication rounds. Then, to address non-ideal scenarios with non-i.i.d. and unbalanced properties of local datasets and varying availability of clients, we further propose a CS algorithm based on the UCB policy and virtual queue technique (CS-UCB-Q). An upper bound is also derived, which shows that the expected performance regret of the proposed CS-UCB-Q algorithm can have a sub-linear growth over communication rounds under certain conditions. Besides, the convergence performance of FL training is also analyzed. Finally, simulation results validate the efficiency of the proposed algorithms.
Next-generation networks are expected to be ultra-dense with a very high peak rate but relatively lower expected traffic per user. For such scenario, existing central controller based resource allocation may incur substantial signaling (control commu nications) leading to a negative effect on the quality of service (e.g. drop calls), energy and spectrum efficiency. To overcome this problem, cognitive ad-hoc networks (CAHN) that share spectrum with other networks are being envisioned. They allow some users to identify and communicate in `free slots thereby reducing signaling load and allowing the higher number of users per base stations (dense networks). Such networks open up many interesting challenges such as resource identification, coordination, dynamic and context-aware adaptation for which Machine Learning and Artificial Intelligence framework offers novel solutions. In this paper, we discuss state-of-the-art multi-armed multi-player bandit based distributed learning algorithms that allow users to adapt to the environment and coordinate with other players/users. We also discuss various open research problems for feasible realization of CAHN and interesting applications in other domains such as energy harvesting, Internet of Things, and Smart grids.
Setting up the future Internet of Things (IoT) networks will require to support more and more communicating devices. We prove that intelligent devices in unlicensed bands can use Multi-Armed Bandit (MAB) learning algorithms to improve resource exploi tation. We evaluate the performance of two classical MAB learning algorithms, UCB1 and Thompson Sampling, to handle the decentralized decision-making of Spectrum Access, applied to IoT networks; as well as learning performance with a growing number of intelligent end-devices. We show that using learning algorithms does help to fit more devices in such networks, even when all end-devices are intelligent and are dynamically changing channel. In the studied scenario, stochastic MAB learning provides a up to 16% gain in term of successful transmission probabilities, and has near optimal performance even in non-stationary and non-i.i.d. settings with a majority of intelligent devices.
We consider the problem of video caching across a set of 5G small-cell base stations (SBS) connected to each other over a high-capacity short-delay back-haul link, and linked to a remote server over a long-delay connection. Even though the problem of minimizing the overall video delivery delay is NP-hard, the Collaborative Caching Algorithm (CCA) that we present can efficiently compute a solution close to the optimal, where the degree of sub-optimality depends on the worst case video-to-cache size ratio. The algorithm is naturally amenable to distributed implementation that requires zero explicit coordination between the SBSs, and runs in $O(N + K log K)$ time, where $N$ is the number of SBSs (caches) and $K$ the maximum number of videos. We extend CCA to an online setting where the video popularities are not known a priori but are estimated over time through a limited amount of periodic information sharing between SBSs. We demonstrate that our algorithm closely approaches the optimal integral caching solution as the cache size increases. Moreover, via simulations carried out on real video access traces, we show that our algorithm effectively uses the SBS caches to reduce the video delivery delay and conserve the remote servers bandwidth, and that it outperforms two other reference caching methods adapted to our system setting.
In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain conditi on. The lognormal approximation is vital because it allows tractable network performance analysis with closed-form expressions. The derived condition, under which the lognormal approximation applies, does not pose particular requirements on the shapes/sizes of user equipment (UE) distribution areas as in previous works. Instead, our results show that if a path loss related random variable (RV) associated with the UE distribution area, has a low ratio of the 3rd absolute moment to the variance, the lognormal approximation will hold. Analytical and simulation results show that the derived condition can be readily satisfied in future dense/ultra-dense SCNs, indicating that our conclusions are very useful for network performance analysis of the 5th generation (5G) systems with more general cell deployment beyond the widely used Poisson deployment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا