ﻻ يوجد ملخص باللغة العربية
The (ultra-)dense deployment of small-cell base stations (SBSs) endowed with cloud-like computing functionalities paves the way for pervasive mobile edge computing (MEC), enabling ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. To handle spatially uneven computation workloads in the network, cooperation among SBSs via workload peer offloading is essential to avoid large computation latency at overloaded SBSs and provide high quality of service to end users. However, performing effective peer offloading faces many unique challenges in small cell networks due to limited energy resources committed by self-interested SBS owners, uncertainties in the system dynamics and co-provisioning of radio access and computing services. This paper develops a novel online SBS peer offloading framework, called OPEN, by leveraging the Lyapunov technique, in order to maximize the long-term system performance while keeping the energy consumption of SBSs below individual long-term constraints. OPEN works online without requiring information about future system dynamics, yet provides provably near-optimal performance compared to the oracle solution that has the complete future information. In addition, this paper formulates a novel peer offloading game among SBSs, analyzes its equilibrium and efficiency loss in terms of the price of anarchy in order to thoroughly understand SBSs strategic behaviors, thereby enabling decentralized and autonomous peer offloading decision making. Extensive simulations are carried out and show that peer offloading among SBSs dramatically improves the edge computing performance.
Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the proximity of data sources, thereby reducing service provision latency and saving backhaul network bandwidth. Although computation offloading has been
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons
Mobile edge computing (MEC) is considered as an efficient method to relieve the computation burden of mobile devices. In order to reduce the energy consumption and time delay of mobile devices (MDs) in MEC, multiple users multiple input and multiple
In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge c
Mobile edge computing (MEC) has recently emerged as a promising technology to release the tension between computation-intensive applications and resource-limited mobile terminals (MTs). In this paper, we study the delay-optimal computation offloading