ترغب بنشر مسار تعليمي؟ اضغط هنا

WISE data as a photometric redshift indicator for radio AGN

79   0   0.0 ( 0 )
 نشر من قبل Marcin Glowacki
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that mid-infrared data from the all-sky WISE survey can be used as a robust photometric redshift indicator for powerful radio AGN, in the absence of other spectroscopic or multi-band photometric information. Our work is motivated by a desire to extend the well-known K-z relation for radio galaxies to the wavelength range covered by the all-sky WISE mid-infrared survey. Using the LARGESS radio spectroscopic sample as a training set, and the mid-infrared colour information to classify radio sources, we generate a set of redshift probability distributions for the hosts of high-excitation and low-excitation radio AGN. We test the method using spectroscopic data from several other radio AGN studies, and find good agreement between our WISE-based redshift estimates and published spectroscopic redshifts out to z ~ 1 for galaxies and z ~ 3-4 for radio-loud QSOs. Our chosen method is also compared against other classification methods and found to perform reliably. This technique is likely to be particularly useful in the analysis of upcoming large-area radio surveys with SKA pathfinder telescopes, and our code is publicly available. As a consistency check, we show that our WISE-based redshift estimates for sources in the 843 MHz SUMSS survey reproduce the redshift distribution seen in the CENSORS study up to z ~ 2. We also discuss two specific applications of our technique for current and upcoming radio surveys; an interpretation of large scale HI absorption surveys, and a determination of whether low-frequency peaked spectrum sources lie at high redshift.



قيم البحث

اقرأ أيضاً

Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Sim ulated and real data from SDSS DR12 were used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms have as the objective the minimization of the sum of squared errors. For redshift inference, however, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper we directly target minimizing $Delta z = (z_textrm{s} - z_textrm{p})/(1+z_textrm{s})$ and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as Artificial Neural Networks (ANN), Gaussian Processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute $Delta z = 0.0026(1+z_textrm{s})$, over the redshift range of $0 le z_textrm{s} le 2$ on the simulated data, and $Delta z = 0.0178(1+z_textrm{s})$ over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training set affects the photometric redshift accuracy. We find that a training set of textgreater 30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.
Future radio surveys will generate catalogues of tens of millions of radio sources, for which redshift estimates will be essential to achieve many of the science goals. However, spectroscopic data will be available for only a small fraction of these sources, and in most cases even the optical and infrared photometry will be of limited quality. Furthermore, radio sources tend to be at higher redshift than most optical sources and so a significant fraction of radio sources hosts differ from those for which most photometric redshift templates are designed. We therefore need to develop new techniques for estimating the redshifts of radio sources. As a starting point in this process, we evaluate a number of machine-learning techniques for estimating redshift, together with a conventional template-fitting technique. We pay special attention to how the performance is affected by the incompleteness of the training sample and by sparseness of the parameter space or by limited availability of ancillary multi-wavelength data. As expected, we find that the quality of the photometric-redshift degrades as the quality of the photometry decreases, but that even with the limited quality of photometry available for all sky-surveys, useful redshift information is available for the majority of sources, particularly at low redshift. We find that a template-fitting technique performs best with high-quality and almost complete multi-band photometry, especially if radio sources that are also X-ray emitting are treated separately. When we reduced the quality of photometry to match that available for the EMU all-sky radio survey, the quality of the template-fitting degraded and became comparable to some of the machine learning methods. Machine learning techniques currently perform better at low redshift than at high redshift, because of incompleteness of the currently available training data at high redshifts.
80 - S. J. Curran 2020
Machine learning techniques, specifically the k-nearest neighbour algorithm applied to optical band colours, have had some success in predicting photometric redshifts of quasi-stellar objects (QSOs): Although the mean of differences between the spect roscopic and photometric redshifts is close to zero, the distribution of these differences remains wide and distinctly non-Gaussian. As per our previous empirical estimate of photometric redshifts, we find that the predictions can be significantly improved by adding colours from other wavebands, namely the near-infrared and ultraviolet. Self-testing this, by using half of the 33 643 strong QSO sample to train the algorithm, results in a significantly narrower spread for the remaining half of the sample. Using the whole QSO sample to train the algorithm, the same set of magnitudes return a similar spread for a sample of radio sources (quasars). Although the matching coincidence is relatively low (739 of the 3663 sources having photometry in the relevant bands), this is still significantly larger than from the empirical method (2%) and thus may provide a method with which to obtain redshifts for the vast number of continuum radio sources expected to be detected with the next generation of large radio telescopes.
We cross-match the two currently largest all-sky photometric catalogs, mid-infrared WISE and SuperCOSMOS scans of UKST/POSS-II photographic plates, to obtain a new galaxy sample that covers 3pi steradians. In order to characterize and purify the extr agalactic dataset, we use external GAMA and SDSS spectroscopic information to define quasar and star loci in multicolor space, aiding the removal of contamination from our extended-source catalog. After appropriate data cleaning we obtain a deep wide-angle galaxy sample that is approximately 95% pure and 90% complete at high Galactic latitudes. The catalog contains close to 20 million galaxies over almost 70% of the sky, outside the Zone of Avoidance and other confused regions, with a mean surface density of over 650 sources per square degree. Using multiwavelength information from two optical and two mid-IR photometric bands, we derive photometric redshifts for all the galaxies in the catalog, using the ANNz framework trained on the final GAMA-II spectroscopic data. Our sample has a median redshift of z_{med} = 0.2 but with a broad dN/dz reaching up to z>0.4. The photometric redshifts have a mean bias of |delta_z|~10^{-3}, normalized scatter of sigma_z = 0.033 and less than 3% outliers beyond 3sigma_z. Comparison with external datasets shows no significant variation of photo-z quality with sky position. Together with the overall statistics, we also provide a more detailed analysis of photometric redshift accuracy as a function of magnitudes and colors. The final catalog is appropriate for `all-sky 3D cosmology to unprecedented depths, in particular through cross-correlations with other large-area surveys. It should also be useful for source pre-selection and identification in forthcoming surveys such as TAIPAN or WALLABY.
103 - K. I. Kellermann 2014
Although the radio emission from most quasars appears to be associated with star forming activity in the host galaxy, about ten percent of optically selected quasars have very luminous relativistic jets apparently powered by a SMBH which is located a t the base of the jet. When these jets are pointed close to the line of sight their apparent luminosity is enhanced by Doppler boosting and appears highly variable. High resolution radio interferometry shows directly the outflow of relativistic plasma jets from the SMBH. Apparent transverse velocities in these so called blazars are typically about 7c but reach as much as 50c indicating true velocities within one percent of the speed of light. The jets appear to be collimated and accelerated in regions as much as a hundred parsecs downstream from the SMBH. Measurements made with Earth to space interferometers indicate apparent brightness temperatures of about 10E14 K or more. This is well in excess of the limits imposed by inverse Compton cooling. The modest Doppler factors deduced from the observed ejection speeds appear to be inadequate to explain the high observed brightness temperatures in terms of relativistic boosting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا