ﻻ يوجد ملخص باللغة العربية
Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Simulated and real data from SDSS DR12 were used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms have as the objective the minimization of the sum of squared errors. For redshift inference, however, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper we directly target minimizing $Delta z = (z_textrm{s} - z_textrm{p})/(1+z_textrm{s})$ and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as Artificial Neural Networks (ANN), Gaussian Processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute $Delta z = 0.0026(1+z_textrm{s})$, over the redshift range of $0 le z_textrm{s} le 2$ on the simulated data, and $Delta z = 0.0178(1+z_textrm{s})$ over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training set affects the photometric redshift accuracy. We find that a training set of textgreater 30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.
This paper aims to put constraints on the transition redshift $z_t$, which determines the onset of cosmic acceleration, in cosmological-model independent frameworks. In order to do that, we use the non-parametric Gaussian Process method with $H(z)$ a
In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of about 25,000 galaxies from the second data release of
We show that mid-infrared data from the all-sky WISE survey can be used as a robust photometric redshift indicator for powerful radio AGN, in the absence of other spectroscopic or multi-band photometric information. Our work is motivated by a desire
Obtaining accurate photometric redshift estimations is an important aspect of cosmology, remaining a prerequisite of many analyses. In creating novel methods to produce redshift estimations, there has been a shift towards using machine learning techn
The calibration of modern radio interferometers is a significant challenge, specifically at low frequencies. In this perspective, we propose a novel iterative calibration algorithm, which employs the popular sparse representation framework, in the re