ﻻ يوجد ملخص باللغة العربية
Machine learning techniques, specifically the k-nearest neighbour algorithm applied to optical band colours, have had some success in predicting photometric redshifts of quasi-stellar objects (QSOs): Although the mean of differences between the spectroscopic and photometric redshifts is close to zero, the distribution of these differences remains wide and distinctly non-Gaussian. As per our previous empirical estimate of photometric redshifts, we find that the predictions can be significantly improved by adding colours from other wavebands, namely the near-infrared and ultraviolet. Self-testing this, by using half of the 33 643 strong QSO sample to train the algorithm, results in a significantly narrower spread for the remaining half of the sample. Using the whole QSO sample to train the algorithm, the same set of magnitudes return a similar spread for a sample of radio sources (quasars). Although the matching coincidence is relatively low (739 of the 3663 sources having photometry in the relevant bands), this is still significantly larger than from the empirical method (2%) and thus may provide a method with which to obtain redshifts for the vast number of continuum radio sources expected to be detected with the next generation of large radio telescopes.
From SDSS commissioning photometric and spectroscopic data, we investigate the utility of photometric redshift techniques to the task of estimating QSO redshifts. We consider empirical methods (e.g. nearest-neighbor searches and polynomial fitting),
Machine learning (ML) is a standard approach for estimating the redshifts of galaxies when only photometric information is available. ML photo-z solutions have traditionally ignored the morphological information available in galaxy images or partly i
At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of eleven new faint (u sim17) ultraviolet standard st
We extend the SDSS Stripe 82 Standard Stars Catalog with post-2007 SDSS imaging data. This improved version lists averaged SDSS ugriz photometry for nearly a million stars brighter than r~22 mag. With 2-3x more measurements per star, random errors ar
The scientific value of the next generation of large continuum surveys would be greatly increased if the redshifts of the newly detected sources could be rapidly and reliably estimated. Given the observational expense of obtaining spectroscopic redsh