ﻻ يوجد ملخص باللغة العربية
In this work, based on consideration of periodicity and asymptotic forms of wave function, we propose a novel approach to the solution of finite volume three-body problem by mapping a three-body problem into a higher dimensional two-body problem. The idea is demonstrated by an example of two light spinless particles and one heavy particle scattering in one spatial dimension. This 1D three-body problem resembles a two-body problem in two spatial dimensions mathematically, and quantization condition of 1D three-body problem is thus derived accordingly.
In present work, we study an numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise $delta$-function potentials. The num
The volume-dependence of a shallow three-particle bound state in the cubic box with a size $L$ is studied. It is shown that, in the unitary limit, the energy-level shift from the infinite-volume position is given by $Delta E=c (kappa^2/m),(kappa L)^{
We discuss signatures of bound-state formation in finite volume via the Luscher finite size method. Assuming that the phase-shift formula in this method inherits all aspects of the quantum scattering theory, we may expect that the bound-state formati
Using the framework of non-relativistic effective field theory, the finite-volume ground-state energy shift is calculated up-to-and-including $O(L^{-6})$ for the system of three pions in the channel with the total isospin $I=1$. The relativistic corr
We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher re