ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistency checks for two-body finite-volume matrix elements: II. Perturbative systems

149   0   0.0 ( 0 )
 نشر من قبل Andrew Jackura
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the general formalism presented in Refs. [1,2], we study the finite-volume effects for the $mathbf{2}+mathcal{J}tomathbf{2}$ matrix element of an external current coupled to a two-particle state of identical scalars with perturbative interactions. Working in a finite cubic volume with periodicity $L$, we derive a $1/L$ expansion of the matrix element through $mathcal O(1/L^5)$ and find that it is governed by two universal current-dependent parameters, the scalar charge and the threshold two-particle form factor. We confirm the result through a numerical study of the general formalism and additionally through an independent perturbative calculation. We further demonstrate a consistency with the Feynman-Hellmann theorem, which can be used to relate the $1/L$ expansions of the ground-state energy and matrix element. The latter gives a simple insight into why the leading volume corrections to the matrix element have the same scaling as those in the energy, $1/L^3$, in contradiction to earlier work, which found a $1/L^2$ contribution to the matrix element. We show here that such a term arises at intermediate stages in the perturbative calculation, but cancels in the final result.

قيم البحث

اقرأ أيضاً

Recently, a framework has been developed to study form factors of two-hadron states probed by an external current. The method is based on relating finite-volume matrix elements, computed using numerical lattice QCD, to the corresponding infinite-volu me observables. As the formalism is complicated, it is important to provide non-trivial checks on the final results and also to explore limiting cases in which more straightforward predications may be extracted. In this work we provide examples on both fronts. First, we show that, in the case of a conserved vector current, the formalism ensures that the finite-volume matrix element of the conserved charge is volume-independent and equal to the total charge of the two-particle state. Second, we study the implications for a two-particle bound state. We demonstrate that the infinite-volume limit reproduces the expected matrix element and derive the leading finite-volume corrections to this result for a scalar current. Finally, we provide numerical estimates for the expected size of volume effects in future lattice QCD calculations of the deuterons scalar charge. We find that these effects completely dominate the infinite-volume result for realistic lattice volumes and that applying the present formalism, to analytically remove an infinite-series of leading volume corrections, is crucial to reliably extract the infinite-volume charge of the state.
In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that a re experimentally inaccessible but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix elements with one current insertion can be directly related to scattering amplitudes coupling to the external current. For two-hadron systems with resonances or bound states, one can extract the corresponding form factors of these from the energy-dependence of the amplitudes.
There exist two methods to study two-baryon systems in lattice QCD: the direct method which extracts eigenenergies from the plateaux of the temporal correlator and the HAL QCD method which extracts observables from the non-local potential associated with the tempo-spatial correlator. Although the two methods should give the same results theoretically, qualitatively different results have been reported. Recently, we pointed out that the separation of the ground state from the excited states is crucial to obtain sensible results in the former, while both states provide useful signals in the latter. In this paper, we identify the contribution of each state in the direct method by decomposing the two-baryon correlators into the finite-volume eigenmodes obtained from the HAL QCD method. We consider the $XiXi$ system in the $^1$S$_0$ channel at $m_pi = 0.51$ GeV in 2+1 flavor lattice QCD using the wall and smeared quark sources. We demonstrate that the pseudo-plateau at early time slices (t = 1~2 fm) from the smeared source in the direct method indeed originates from the contamination of the excited states, and the true plateau with the ground state saturation is realized only at t > 5~15 fm corresponding to the inverse of the lowest excitation energy. We also demonstrate that the two-baryon operator can be optimized by utilizing the finite-volume eigenmodes, so that (i) the finite-volume energy spectra from the HAL QCD method agree with those from the optimized temporal correlator and (ii) the correct spectra would be accessed in the direct method only if highly optimized operators are employed. Thus we conclude that the long-standing issue on the consistency between the Luschers finite volume method and the HAL QCD method for two baryons is now resolved: They are consistent with each other quantitatively only if the excited contamination is properly removed in the former.
We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher re lation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating $K to 3pi$ weak decay, the isospin-breaking $eta to 3pi$ QCD transition, and the electromagnetic $gamma^*to 3pi$ amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic $g-2$.
On the basis of the Luschers finite volume formula, a simple test (consistency check or sanity check) is introduced and applied to inspect the recent claims of the existence of the nucleon-nucleon ($NN$) bound state(s) for heavy quark masses in latti ce QCD. We show that the consistency between the scattering phase shifts at $k^2 > 0$ and/or $k^2 < 0$ obtained from the lattice data and the behavior of phase shifts from the effective range expansion (ERE) around $k^2=0$ exposes the validity of the original lattice data, otherwise such information is hidden in the energy shift $Delta E$ of the two nucleons on the lattice. We carry out this sanity check for all the lattice results in the literature claiming the existence of the $NN$ bound state(s) for heavy quark masses, and find that (i) some of the $NN$ data show clear inconsistency between the behavior of ERE at $k^2 > 0$ and that at $k^2 < 0$, (ii) some of the $NN$ data exhibit singular behavior of the low energy parameter (such as the divergent effective range) at $k^2<0$, (iii) some of the $NN$ data have the unphysical residue for the bound state pole in S-matrix, and (iv) the rest of the $NN$ data are inconsistent among themselves. Furthermore, we raise a caution of using the ERE in the case of the multiple bound states. Our finding, together with the fake plateau problem previously pointed out by the present authors, brings a serious doubt on the existence of the $NN$ bound states for pion masses heavier than 300 MeV in the previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا