ترغب بنشر مسار تعليمي؟ اضغط هنا

Expanding Motor Skills through Relay Neural Networks

111   0   0.0 ( 0 )
 نشر من قبل Visak Chadalavada Vijay Kumar
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While the recent advances in deep reinforcement learning have achieved impressive results in learning motor skills, many of the trained policies are only capable within a limited set of initial states. We propose a technique to break down a complex robotic task to simpler subtasks and train them sequentially such that the robot can expand its existing skill set gradually. Our key idea is to build a tree of local control policies represented by neural networks, which we refer as Relay Neural Networks. Starting from the root policy that attempts to achieve the task from a small set of initial states, each subsequent policy expands the set of successful initial states by driving the new states to existing good states. Our algorithm utilizes the value function of the policy to determine whether a state is good under each policy. We take advantage of many existing policy search algorithms that learn the value function simultaneously with the policy, such as those that use actor-critic representations or those that use the advantage function to reduce variance. We demonstrate that the relay networks can solve complex continuous control problems for underactuated dynamic systems.



قيم البحث

اقرأ أيضاً

This paper presents a hierarchical framework for Deep Reinforcement Learning that acquires motor skills for a variety of push recovery and balancing behaviors, i.e., ankle, hip, foot tilting, and stepping strategies. The policy is trained in a physic s simulator with realistic setting of robot model and low-level impedance control that are easy to transfer the learned skills to real robots. The advantage over traditional methods is the integration of high-level planner and feedback control all in one single coherent policy network, which is generic for learning versatile balancing and recovery motions against unknown perturbations at arbitrary locations (e.g., legs, torso). Furthermore, the proposed framework allows the policy to be learned quickly by many state-of-the-art learning algorithms. By comparing our learned results to studies of preprogrammed, special-purpose controllers in the literature, self-learned skills are comparable in terms of disturbance rejection but with additional advantages of producing a wide range of adaptive, versatile and robust behaviors.
Learning from demonstration (LfD) is commonly considered to be a natural and intuitive way to allow novice users to teach motor skills to robots. However, it is important to acknowledge that the effectiveness of LfD is heavily dependent on the qualit y of teaching, something that may not be assured with novices. It remains an open question as to the most effective way of guiding demonstrators to produce informative demonstrations beyond ad hoc advice for specific teaching tasks. To this end, this paper investigates the use of machine teaching to derive an index for determining the quality of demonstrations and evaluates its use in guiding and training novices to become better teachers. Experiments with a simple learner robot suggest that guidance and training of teachers through the proposed approach can lead to up to 66.5% decrease in error in the learnt skill.
In the current level of evolution of Soccer 3D, motion control is a key factor in teams performance. Recent works takes advantages of model-free approaches based on Machine Learning to exploit robot dynamics in order to obtain faster locomotion skill s, achieving running policies and, therefore, opening a new research direction in the Soccer 3D environment. In this work, we present a methodology based on Deep Reinforcement Learning that learns running skills without any prior knowledge, using a neural network whose inputs are related to robots dynamics. Our results outperformed the previous state-of-the-art sprint velocity reported in Soccer 3D literature by a significant margin. It also demonstrated improvement in sample efficiency, being able to learn how to run in just few hours. We reported our results analyzing the training procedure and also evaluating the policies in terms of speed, reliability and human similarity. Finally, we presented key factors that lead us to improve previous results and shared some ideas for future work.
Pouring is one of the most commonly executed tasks in humans daily lives, whose accuracy is affected by multiple factors, including the type of material to be poured and the geometry of the source and receiving containers. In this work, we propose a self-supervised learning approach that learns the pouring dynamics, pouring motion, and outcomes from unsupervised demonstrations for accurate pouring. The learned pouring model is then generalized by self-supervised practicing to different conditions such as using unaccustomed pouring cups. We have evaluated the proposed approach first with one container from the training set and four new but similar containers. The proposed approach achieved better pouring accuracy than a regular human with a similar pouring speed for all five cups. Both the accuracy and pouring speed outperform state-of-the-art works. We have also evaluated the proposed self-supervised generalization approach using unaccustomed containers that are far different from the ones in the training set. The self-supervised generalization reduces the pouring error of the unaccustomed containers to the desired accuracy level.
Personal robots assisting humans must perform complex manipulation tasks that are typically difficult to specify in traditional motion planning pipelines, where multiple objectives must be met and the high-level context be taken into consideration. L earning from demonstration (LfD) provides a promising way to learn these kind of complex manipulation skills even from non-technical users. However, it is challenging for existing LfD methods to efficiently learn skills that can generalize to task specifications that are not covered by demonstrations. In this paper, we introduce a state transition model (STM) that generates joint-space trajectories by imitating motions from expert behavior. Given a few demonstrations, we show in real robot experiments that the learned STM can quickly generalize to unseen tasks and synthesize motions having longer time horizons than the expert trajectories. Compared to conventional motion planners, our approach enables the robot to accomplish complex behaviors from high-level instructions without laborious hand-engineering of planning objectives, while being able to adapt to changing goals during the skill execution. In conjunction with a trajectory optimizer, our STM can construct a high-quality skeleton of a trajectory that can be further improved in smoothness and precision. In combination with a learned inverse dynamics model, we additionally present results where the STM is used as a high-level planner. A video of our experiments is available at https://youtu.be/85DX9Ojq-90
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا