ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonic-Band-Gap Gyrotron Amplifier with Picosecond Pulses

123   0   0.0 ( 0 )
 نشر من قبل Emilio Nanni
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the amplification of 250~GHz pulses as short as 260~ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with 38~dB of device gain and 8~GHz of instantaneous bandwidth. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30~cm long photonic-band-gap interaction circuit to confine the desired TE$_{03}$-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is $>$55~dB for a beam voltage of 23~kV and a current of 700~mA. These results demonstrate the wide bandwidths and high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800~ps, shows good agreement with theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.



قيم البحث

اقرأ أيضاً

Interconnects are a major discriminator for superconducting digital technology, enabling energy efficient data transfer and high-bandwidth heterogeneous integration. We report a method to simulate propagation of picosecond pulses in superconducting p assive transmission lines (PTLs). A frequency-domain propagator model obtained from the Ansys High Frequency Structure Simulator (HFSS) field solver is incorporated in a Cadence Spectre circuit model, so that the particular PTL geometry can be simulated in the time-domain. The Mattis-Bardeen complex conductivity of the superconductor is encoded in the HFSS field solver as a complex-conductivity insulator. Experimental and simulation results show that Nb 20 Ohm microstrip PTLs with 1um width can support propagation of a single-flux-quantum pulse up to 7mm and a double-flux-quantum pulse up to 28mm.
Laser plasma amplification of sub-picosecond pulses above the Joule level is demonstrated, a major milestone for this scheme to become a solution for the next-generation of ultra-high intensity lasers. By exploring over 6 orders of magnitude the infl uence of the incident seed intensity on Brillouin laser amplification, we reveal the importance of a minimum intensity to ensure an early onset of the self-similar regime, and a large energy transfer with a very high efficiency, up to 20%. Evidence of energy losses of the seed by spontaneous backward Raman is found at high amplification. The first three-dimensional envelope simulations of the sub-picosecond amplification were performed, supplemented by one-dimensional PIC simulations. Comparisons with the experimental results demonstrate the capability of quantitative predictions on the transferred energy. The global behavior of the amplification process, is reproduced, including the evolution of the spatial profile of the amplified seed.
Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insul ators (PTIs) have been experimentally demonstrated. However, in the previous valley-Hall PTIs, topological kink states only work at a single frequency band, which limits potential applications in multiband waveguides, filters, communications, and so on. To overcome this challenge, here we experimentally demonstrate a valley-Hall PTI, where the topological kink states exist at two separated frequency bands, in a microwave substrate-integrated circuitry. Both the simulated and experimental results demonstrate the dual-band valley-Hall topological kink states are robust against the sharp bends of the internal domain wall with negligible inter-valley scattering. Our work may pave the way for multi-channel substrate-integrated photonic devices with high efficiency and high capacity for information communications and processing.
The ever-increasing demand for high speed and large bandwidth has made photonic systems a leading candidate for the next generation of telecommunication and radar technologies. The photonic platform enables high performance while maintaining a small footprint and provides a natural interface with fiber optics for signal transmission. However, producing sharp, narrow-band filters that are competitive with RF components has remained challenging. In this paper, we demonstrate all-silicon RF-photonic multi-pole filters with $sim100times$ higher spectral resolution than previously possible in silicon photonics. This enhanced performance is achieved utilizing engineered Brillouin interactions to access long-lived phonons, greatly extending the available coherence times in silicon. This Brillouin-based optomechanical system enables ultra-narrow (3.5 MHz) multi-pole response that can be tuned over a wide ($sim10$ GHz) spectral band. We accomplish this in an all-silicon optomechanical waveguide system, using CMOS compatible fabrication techniques. In addition to bringing greatly enhanced performance to silicon photonics, we demonstrate reliability and robustness, necessary to transition silicon-based optomechanical technologies from the scientific bench-top to high-impact field-deployable technologies.
Beta gallium oxide (beta-Ga2O3) is an emerging ultrawide band gap (4.5 - 4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. beta-Ga2O3 thin films made by various methods are being actively studied toward such devices. Here, we report on the experimental demonstration of single-crystal beta-Ga2O3 nanomechanical resonators using beta-Ga2O3 nanoflakes grown via low-pressure chemical vapor deposition (LPCVD). By investigating beta-Ga2O3 circular drumhead structures, we demonstrate multimode nanoresonators up to the 6th mode in high and very high frequency (HF / VHF) bands, and also realize spatial mapping and visualization of the multimode motion. These measurements reveal a Youngs modulus of E_Y = 261 GPa and anisotropic biaxial built-in tension of 37.5 MPa and 107.5 MPa. We find that thermal annealing can considerably improve the resonance characteristics, including ~40% upshift in frequency and ~90% enhancement in quality (Q) factor. This study lays a foundation for future exploration and development of mechanically coupled and tunable beta-Ga2O3 electronic, optoelectronic, and physical sensing devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا