ﻻ يوجد ملخص باللغة العربية
We report the amplification of 250~GHz pulses as short as 260~ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with 38~dB of device gain and 8~GHz of instantaneous bandwidth. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30~cm long photonic-band-gap interaction circuit to confine the desired TE$_{03}$-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is $>$55~dB for a beam voltage of 23~kV and a current of 700~mA. These results demonstrate the wide bandwidths and high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800~ps, shows good agreement with theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.
Interconnects are a major discriminator for superconducting digital technology, enabling energy efficient data transfer and high-bandwidth heterogeneous integration. We report a method to simulate propagation of picosecond pulses in superconducting p
Laser plasma amplification of sub-picosecond pulses above the Joule level is demonstrated, a major milestone for this scheme to become a solution for the next-generation of ultra-high intensity lasers. By exploring over 6 orders of magnitude the infl
Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insul
The ever-increasing demand for high speed and large bandwidth has made photonic systems a leading candidate for the next generation of telecommunication and radar technologies. The photonic platform enables high performance while maintaining a small
Beta gallium oxide (beta-Ga2O3) is an emerging ultrawide band gap (4.5 - 4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. beta-Ga2O3 thin films