ﻻ يوجد ملخص باللغة العربية
In this paper, a discrete LCT (DLCT) irrelevant to the sampling periods and without oversampling operation is developed. This DLCT is based on the well-known CM-CC-CM decomposition, that is, implemented by two discrete chirp multiplications (CMs) and one discrete chirp convolution (CC). This decomposition doesnt use any scaling operation which will change the sampling period or cause the interpolation error. Compared with previous works, DLCT calculated by direct summation and DLCT based on center discrete dilated Hermite functions (CDDHFs), the proposed method implemented by FFTs has much lower computational complexity. The relation between the proposed DLCT and the continuous LCT is also derived to approximate the samples of the continuous LCT. Simulation results show that the proposed method somewhat outperforms the CDDHFs-based method in the approximation accuracy. Besides, the proposed method has approximate additivity property with error as small as the CDDHFs-based method. Most importantly, the proposed method has perfect reversibility, which doesnt hold in many existing DLCTs. With this property, it is unnecessary to develop the inverse DLCT additionally because it can be replaced by the forward DLCT.
As a generalization of the two-dimensional Fourier transform (2D FT) and 2D fractional Fourier transform, the 2D nonseparable linear canonical transform (2D NsLCT) is useful in optics, signal and image processing. To reduce the digital implementation
Generalized analytic signal associated with the linear canonical transform (LCT) was proposed recently by Fu and Li [Generalized Analytic Signal Associated With Linear Canonical Transform, Opt. Commun., vol. 281, pp. 1468-1472, 2008]. However, most r
A new iterative low complexity algorithm has been presented for computing the Walsh-Hadamard transform (WHT) of an $N$ dimensional signal with a $K$-sparse WHT, where $N$ is a power of two and $K = O(N^alpha)$, scales sub-linearly in $N$ for some $0
In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdet
In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this pu