ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Discrete Linear Canonical Transform Based on CM-CC-CM Decomposition and FFT

71   0   0.0 ( 0 )
 نشر من قبل Shih-Gu Huang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a discrete LCT (DLCT) irrelevant to the sampling periods and without oversampling operation is developed. This DLCT is based on the well-known CM-CC-CM decomposition, that is, implemented by two discrete chirp multiplications (CMs) and one discrete chirp convolution (CC). This decomposition doesnt use any scaling operation which will change the sampling period or cause the interpolation error. Compared with previous works, DLCT calculated by direct summation and DLCT based on center discrete dilated Hermite functions (CDDHFs), the proposed method implemented by FFTs has much lower computational complexity. The relation between the proposed DLCT and the continuous LCT is also derived to approximate the samples of the continuous LCT. Simulation results show that the proposed method somewhat outperforms the CDDHFs-based method in the approximation accuracy. Besides, the proposed method has approximate additivity property with error as small as the CDDHFs-based method. Most importantly, the proposed method has perfect reversibility, which doesnt hold in many existing DLCTs. With this property, it is unnecessary to develop the inverse DLCT additionally because it can be replaced by the forward DLCT.



قيم البحث

اقرأ أيضاً

As a generalization of the two-dimensional Fourier transform (2D FT) and 2D fractional Fourier transform, the 2D nonseparable linear canonical transform (2D NsLCT) is useful in optics, signal and image processing. To reduce the digital implementation complexity of the 2D NsLCT, some previous works decomposed the 2D NsLCT into several low-complexity operations, including 2D FT, 2D chirp multiplication (2D CM) and 2D affine transformations. However, 2D affine transformations will introduce interpolation error. In this paper, we propose a new decomposition called CM-CC-CM-CC decomposition, which decomposes the 2D NsLCT into two 2D CMs and two 2D chirp convolutions (2D CCs). No 2D affine transforms are involved. Simulation results show that the proposed methods have higher accuracy, lower computational complexity and smaller error in the additivity property compared with the previous works. Plus, the proposed methods have perfect reversibility property that one can reconstruct the input signal/image losslessly from the output.
Generalized analytic signal associated with the linear canonical transform (LCT) was proposed recently by Fu and Li [Generalized Analytic Signal Associated With Linear Canonical Transform, Opt. Commun., vol. 281, pp. 1468-1472, 2008]. However, most r eal signals, especially for baseband real signals, cannot be perfectly recovered from their generalized analytic signals. Therefore, in this paper, the conventional Hilbert transform (HT) and analytic signal associated with the LCT are concerned. To transform a real signal into the LCT of its HT, two integral transforms (i.e., the HT and LCT) are required. The goal of this paper is to simplify cascades of multiple integral transforms, which may be the HT, analytic signal, LCT or inverse LCT. The proposed transforms can reduce the complexity when realizing the relationships among the following six kinds of signals: a real signal, its HT and analytic signal, and the LCT of these three signals. Most importantly, all the proposed transforms are reversible and undistorted. Using the proposed transforms, several signal processing applications are discussed and show the advantages and flexibility over simply using the analytic signal or the LCT.
A new iterative low complexity algorithm has been presented for computing the Walsh-Hadamard transform (WHT) of an $N$ dimensional signal with a $K$-sparse WHT, where $N$ is a power of two and $K = O(N^alpha)$, scales sub-linearly in $N$ for some $0 < alpha < 1$. Assuming a random support model for the non-zero transform domain components, the algorithm reconstructs the WHT of the signal with a sample complexity $O(K log_2(frac{N}{K}))$, a computational complexity $O(Klog_2(K)log_2(frac{N}{K}))$ and with a very high probability asymptotically tending to 1. The approach is based on the subsampling (aliasing) property of the WHT, where by a carefully designed subsampling of the time domain signal, one can induce a suitable aliasing pattern in the transform domain. By treating the aliasing patterns as parity-check constraints and borrowing ideas from erasure correcting sparse-graph codes, the recovery of the non-zero spectral values has been formulated as a belief propagation (BP) algorithm (peeling decoding) over a sparse-graph code for the binary erasure channel (BEC). Tools from coding theory are used to analyze the asymptotic performance of the algorithm in the very sparse ($alphain(0,frac{1}{3}]$) and the less sparse ($alphain(frac{1}{3},1)$) regime.
In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdet ermined Sparse Component Analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real field codes. Contrary to previous methods, which usually solve this problem by minimizing the L1 norm using Linear Programming (LP) techniques, our algorithm tries to directly minimize the L0 norm. It is experimentally shown that the proposed algorithm is about two to three orders of magnitude faster than the state-of-the-art interior-point LP solvers, while providing the same (or better) accuracy.
In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this pu rpose, we propose a shift operator based on the directed Laplacian of a graph. Based on our shift operator, we then define total variation of graph signals, which is used in frequency ordering. We achieve natural frequency ordering and interpretation via the proposed definition of GFT. Moreover, we show that our proposed shift operator makes the LSI filters under DSP$_mathrm{G}$ to become polynomial in the directed Laplacian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا