ﻻ يوجد ملخص باللغة العربية
A new iterative low complexity algorithm has been presented for computing the Walsh-Hadamard transform (WHT) of an $N$ dimensional signal with a $K$-sparse WHT, where $N$ is a power of two and $K = O(N^alpha)$, scales sub-linearly in $N$ for some $0 < alpha < 1$. Assuming a random support model for the non-zero transform domain components, the algorithm reconstructs the WHT of the signal with a sample complexity $O(K log_2(frac{N}{K}))$, a computational complexity $O(Klog_2(K)log_2(frac{N}{K}))$ and with a very high probability asymptotically tending to 1. The approach is based on the subsampling (aliasing) property of the WHT, where by a carefully designed subsampling of the time domain signal, one can induce a suitable aliasing pattern in the transform domain. By treating the aliasing patterns as parity-check constraints and borrowing ideas from erasure correcting sparse-graph codes, the recovery of the non-zero spectral values has been formulated as a belief propagation (BP) algorithm (peeling decoding) over a sparse-graph code for the binary erasure channel (BEC). Tools from coding theory are used to analyze the asymptotic performance of the algorithm in the very sparse ($alphain(0,frac{1}{3}]$) and the less sparse ($alphain(frac{1}{3},1)$) regime.
In this paper we propose efficient decoding techniques to significantly improve the error-correction performance of fast successive-cancellation (FSC) and FSC list (FSCL) decoding algorithms for short low-order Reed-Muller (RM) codes. In particular,
In this paper, a discrete LCT (DLCT) irrelevant to the sampling periods and without oversampling operation is developed. This DLCT is based on the well-known CM-CC-CM decomposition, that is, implemented by two discrete chirp multiplications (CMs) and
Generalized analytic signal associated with the linear canonical transform (LCT) was proposed recently by Fu and Li [Generalized Analytic Signal Associated With Linear Canonical Transform, Opt. Commun., vol. 281, pp. 1468-1472, 2008]. However, most r
Orthogonal time frequency space (OTFS) modulation can effectively convert a doubly dispersive channel into an almost non-fading channel in the delay-Doppler domain. However, one critical issue for OTFS is the very high complexity of equalizers. In th
We present the generalized iterative residual fitting (IRF) for the computation of the spherical harmonic transform (SHT) of band-limited signals on the sphere. The proposed method is based on the partitioning of the subspace of band-limited signals