ﻻ يوجد ملخص باللغة العربية
Multi-view data are increasingly prevalent in practice. It is often relevant to analyze the relationships between pairs of views by multi-view component analysis techniques such as Canonical Correlation Analysis (CCA). However, data may easily exhibit nonlinear relations, which CCA cannot reveal. We aim to investigate the usefulness of nonlinear multi-view relations to characterize multi-view data in an explainable manner. To address this challenge, we propose a method to characterize globally nonlinear multi-view relationships as a mixture of linear relationships. A clustering method, it identifies partitions of observations that exhibit the same relationships and learns those relationships simultaneously. It defines cluster variables by multi-view rather than spatial relationships, unlike almost all other clustering methods. Furthermore, we introduce a supervised classification method that builds on our clustering method by employing multi-view relationships as discriminative factors. The value of these methods resides in their capability to find useful structure in the data that single-view or current multi-view methods may struggle to find. We demonstrate the potential utility of the proposed approach using an application in clinical informatics to detect and characterize slow bleeding in patients whose central venous pressure (CVP) is monitored at the bedside. Presently, CVP is considered an insensitive measure of a subjects intravascular volume status or its change. However, we reason that features of CVP during inspiration and expiration should be informative in early identification of emerging changes of patient status. We empirically show how the proposed method can help discover and analyze multiple-to-multiple correlations, which could be nonlinear or vary throughout the population, by finding explainable structure of operational interest to practitioners.
In many scientific problems such as video surveillance, modern genomic analysis, and clinical studies, data are often collected from diverse domains across time that exhibit time-dependent heterogeneous properties. It is important to not only integra
Discovery of causal relationships from observational data is an important problem in many areas. Several recent results have established the identifiability of causal DAGs with non-Gaussian and/or nonlinear structural equation models (SEMs). In this
Factor analysis aims to determine latent factors, or traits, which summarize a given data set. Inter-battery factor analysis extends this notion to multiple views of the data. In this paper we show how a nonlinear, nonparametric version of these mode
In biomedical research, many different types of patient data can be collected, such as various types of omics data and medical imaging modalities. Applying multi-view learning to these different sources of information can increase the accuracy of med
Self-supervised metric learning has been a successful approach for learning a distance from an unlabeled dataset. The resulting distance is broadly useful for improving various distance-based downstream tasks, even when no information from downstream