ﻻ يوجد ملخص باللغة العربية
Models of codon evolution are commonly used to identify positive selection. Positive selection is typically a heterogeneous process, i.e., it acts on some branches of the evolutionary tree and not others. Previous work on DNA models showed that when evolution occurs under a heterogeneous process it is important to consider the property of model closure, because non-closed models can give biased estimates of evolutionary processes. The existing codon models that account for the genetic code are not closed; to establish this it is enough to show that they are not linear (meaning that the sum of two codon rate matrices in the model is not a matrix in the model). This raises the concern that a single codon model fit to a heterogeneous process might mis-estimate both the effect of selection and branch lengths. Codon models are typically constructed by choosing an underlying DNA model (e.g., HKY) that acts identically and independently at each codon position, and then applying the genetic code via the parameter $omega$ to modify the rate of transitions between codons that code for different amino acids. Here we use simulation to investigate the accuracy of estimation of both the selection parameter $omega$ and branch lengths in cases where the underlying DNA process is heterogeneous but $omega$ is constant. We find that both $omega$ and branch lengths can be mis-estimated in these scenarios. Errors in $omega$ were usually less than 2% but could be as high as 17%. We also assessed if choosing different underlying DNA models had any affect on accuracy, in particular we assessed if using closed DNA models gave any advantage. However, a DNA model being closed does not imply that the codon model constructed from it is closed, and in general we found that using closed DNA models did not decrease errors in the estimation of $omega$.
Pairwise models are used widely to model epidemic spread on networks. These include the modelling of susceptible-infected-removed (SIR) epidemics on regular networks and extensions to SIS dynamics and contact tracing on more exotic networks exhibitin
A matrix Lie algebra is a linear space of matrices closed under the operation $ [A, B] = AB-BA $. The Lie closure of a set of matrices is the smallest matrix Lie algebra which contains the set. In the context of Markov chain theory, if a set of rate
Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be ex
MomentClosure.jl is a Julia package providing automated derivation of the time-evolution equations of the moments of molecule numbers for virtually any chemical reaction network using a wide range of moment closure approximations. It extends the capa
The mechanical properties of DNA play a critical role in many biological functions. For example, DNA packing in viruses involves confining the viral genome in a volume (the viral capsid) with dimensions that are comparable to the DNA persistence leng