ﻻ يوجد ملخص باللغة العربية
Pairwise models are used widely to model epidemic spread on networks. These include the modelling of susceptible-infected-removed (SIR) epidemics on regular networks and extensions to SIS dynamics and contact tracing on more exotic networks exhibiting degree heterogeneity, directed and/or weighted links and clustering. However, extra features of the disease dynamics or of the network lead to an increase in system size and analytical tractability becomes problematic. Various `closures can be used to keep the system tractable. Focusing on SIR epidemics on regular but clustered networks, we show that even for the most complex closure we can determine the epidemic threshold as an asymptotic expansion in terms of the clustering coefficient.We do this by exploiting the presence of a system of fast variables, specified by the correlation structure of the epidemic, whose steady state determines the epidemic threshold. While we do not find the steady state analytically, we create an elegant asymptotic expansion of it. We validate this new threshold by comparing it to the numerical solution of the full system and find excellent agreement over a wide range of values of the clustering coefficient, transmission rate and average degree of the network. The technique carries over to pairwise models with other closures [1] and we note that the epidemic threshold will be model dependent. This emphasises the importance of model choice when dealing with realistic outbreaks.
Models of codon evolution are commonly used to identify positive selection. Positive selection is typically a heterogeneous process, i.e., it acts on some branches of the evolutionary tree and not others. Previous work on DNA models showed that when
The appearance of a novel coronavirus named Middle East (ME) Respiratory Syndrome Coronavirus (MERS-CoV) has raised global public health concerns regarding the current situation and its future evolution. Here we propose an integrative maximum likelih
The initial cluster of severe pneumonia cases that triggered the 2019-nCoV epidemic was identified in Wuhan, China in December 2019. While early cases of the disease were linked to a wet market, human-to-human transmission has driven the rapid spread
The COVID-19 has caused more than three million infections and over two hundred thousand deaths by April 20201. Limiting socioeconomic activities (SA) is among the most adopted governmental mitigating efforts to combat the transmission of the virus,
We study the stochastic susceptible-infected-recovered (SIR) model with time-dependent forcing using analytic techniques which allow us to disentangle the interaction of stochasticity and external forcing. The model is formulated as a continuous time