ﻻ يوجد ملخص باللغة العربية
Appearing in different format, Gupta,(1967), Goldberg,(1973), Andersen,(1977), and Seymour,(1979) conjectured that if $G$ is an edge-$k$-critical graph with $k ge Delta +1$, then $|V(G)|$ is odd and, for every edge $e$, $E(G-e)$ is a union of disjoint near-perfect matchings, where $Delta$ denotes the maximum degree of $G$. Tashkinov tree method shows that critical graphs contain a subgraph with two important properties named closed and elementary. Recently, efforts have been made in extending graphs beyond Tashkinov trees. However, these results can only keep one of the two essential properties. In this paper, we developed techniques to extend Tashkinov trees to larger subgraphs with both properties. Applying our result, we have improved almost all known results towards Goldbergs conjecture. In particular, we showed that Goldbergs conjecture holds for graph $G$ with $|V(G)| le 39$ and $|Delta(G)| le 39$ and Jacobsens equivalent conjecture holds for $m le 39$ while the previous known bound is $23$.
Given a graph $G$, denote by $Delta$, $bar{d}$ and $chi^prime$ the maximum degree, the average degree and the chromatic index of $G$, respectively. A simple graph $G$ is called {it edge-$Delta$-critical} if $chi^prime(G)=Delta+1$ and $chi^prime(H)leD
Let $G$ be a simple graph with maximum degree $Delta(G)$ and chromatic index $chi(G)$. A classic result of Vizing indicates that either $chi(G )=Delta(G)$ or $chi(G )=Delta(G)+1$. The graph $G$ is called $Delta$-critical if $G$ is connected, $chi(G )
Given a multigraph $G=(V,E)$, the {em edge-coloring problem} (ECP) is to color the edges of $G$ with the minimum number of colors so that no two adjacent edges have the same color. This problem can be naturally formulated as an integer program, and i
In this paper, we present some properties on chromatic polynomials of hypergraphs which do not hold for chromatic polynomials of graphs. We first show that chromatic polynomials of hypergraphs have all integers as their zeros and contain dense real z
In this note we obtain a new bound for the acyclic edge chromatic number $a(G)$ of a graph $G$ with maximum degree $D$ proving that $a(G)leq 3.569(D-1)$. To get this result we revisit and slightly modify the method described in [Giotis, Kirousis, Psa