ﻻ يوجد ملخص باللغة العربية
Given a graph $G$, denote by $Delta$, $bar{d}$ and $chi^prime$ the maximum degree, the average degree and the chromatic index of $G$, respectively. A simple graph $G$ is called {it edge-$Delta$-critical} if $chi^prime(G)=Delta+1$ and $chi^prime(H)leDelta$ for every proper subgraph $H$ of $G$. Vizing in 1968 conjectured that if $G$ is edge-$Delta$-critical, then $bar{d}geq Delta-1+ frac{3}{n}$. We show that $$ begin{displaystyle} avd ge begin{cases} 0.69241D-0.15658 quad,: mbox{ if } Deltageq 66, 0.69392D-0.20642quad;,mbox{ if } Delta=65, mbox{ and } 0.68706D+0.19815quad! quadmbox{if } 56leq Deltaleq64. end{cases} end{displaystyle} $$ This result improves the best known bound $frac{2}{3}(Delta +2)$ obtained by Woodall in 2007 for $Delta geq 56$. Additionally, Woodall constructed an infinite family of graphs showing his result cannot be improved by well-known Vizings Adjacency Lemma and other known edge-coloring techniques. To over come the barrier, we follow the recently developed recoloring technique of Tashkinov trees to expand Vizing fans technique to a larger class of trees.
Let $G$ be a simple graph with maximum degree $Delta(G)$ and chromatic index $chi(G)$. A classic result of Vizing indicates that either $chi(G )=Delta(G)$ or $chi(G )=Delta(G)+1$. The graph $G$ is called $Delta$-critical if $G$ is connected, $chi(G )
Appearing in different format, Gupta,(1967), Goldberg,(1973), Andersen,(1977), and Seymour,(1979) conjectured that if $G$ is an edge-$k$-critical graph with $k ge Delta +1$, then $|V(G)|$ is odd and, for every edge $e$, $E(G-e)$ is a union of disjoin
The edge-distinguishing chromatic number (EDCN) of a graph $G$ is the minimum positive integer $k$ such that there exists a vertex coloring $c:V(G)to{1,2,dotsc,k}$ whose induced edge labels ${c(u),c(v)}$ are distinct for all edges $uv$. Previous work
Kostochka and Yancey proved that every $4$-critical graph $G$ has $e(G) geq frac{5v(G) - 2}{3}$, and that equality holds if and only if $G$ is $4$-Ore. We show that a question of Postle and Smith-Roberge implies that every $4$-critical graph with no
A graph $G$ is emph{uniquely k-colorable} if the chromatic number of $G$ is $k$ and $G$ has only one $k$-coloring up to permutation of the colors. A uniquely $k$-colorable graph $G$ is edge-critical if $G-e$ is not a uniquely $k$-colorable graph for