ﻻ يوجد ملخص باللغة العربية
Let $G$ be a simple graph with maximum degree $Delta(G)$ and chromatic index $chi(G)$. A classic result of Vizing indicates that either $chi(G )=Delta(G)$ or $chi(G )=Delta(G)+1$. The graph $G$ is called $Delta$-critical if $G$ is connected, $chi(G )=Delta(G)+1$ and for any $ein E(G)$, $chi(G-e)=Delta(G)$. Let $G$ be an $n$-vertex $Delta$-critical graph. Vizing conjectured that $alpha(G)$, the independence number of $G$, is at most $frac{n}{2}$. The current best result on this conjecture, shown by Woodall, is that $alpha(G)<frac{3n}{5}$. We show that for any given $varepsilonin (0,1)$, there exist positive constants $d_0(varepsilon)$ and $D_0(varepsilon)$ such that if $G$ is an $n$-vertex $Delta$-critical graph with minimum degree at least $d_0$ and maximum degree at least $D_0$, then $alpha(G)<(frac{{1}}{2}+varepsilon)n$. In particular, we show that if $G$ is an $n$-vertex $Delta$-critical graph with minimum degree at least $d$ and $Delta(G)ge (d+2)^{5d+10}$, then [ alpha(G) < left. begin{cases} frac{7n}{12}, & text{if $d= 3$; } frac{4n}{7}, & text{if $d= 4$; } frac{d+2+sqrt[3]{(d-1)d}}{2d+4+sqrt[3]{(d-1)d}}n<frac{4n}{7}, & text{if $dge 19$. } end{cases} right. ]
Given a graph $G$, denote by $Delta$, $bar{d}$ and $chi^prime$ the maximum degree, the average degree and the chromatic index of $G$, respectively. A simple graph $G$ is called {it edge-$Delta$-critical} if $chi^prime(G)=Delta+1$ and $chi^prime(H)leD
Kostochka and Yancey proved that every $4$-critical graph $G$ has $e(G) geq frac{5v(G) - 2}{3}$, and that equality holds if and only if $G$ is $4$-Ore. We show that a question of Postle and Smith-Roberge implies that every $4$-critical graph with no
The edge-distinguishing chromatic number (EDCN) of a graph $G$ is the minimum positive integer $k$ such that there exists a vertex coloring $c:V(G)to{1,2,dotsc,k}$ whose induced edge labels ${c(u),c(v)}$ are distinct for all edges $uv$. Previous work
A signed graph is a pair $(G, sigma)$, where $G$ is a graph and $sigma: E(G) to {+, -}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular colorin
Let Q(n,c) denote the minimum clique size an n-vertex graph can have if its chromatic number is c. Using Ramsey graphs we give an exact, albeit implicit, formula for the case c is at least (n+3)/2.