ﻻ يوجد ملخص باللغة العربية
Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which exotic modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. Along these lines, here we demonstrate, both theoretically and experimentally, that when two indistinguishable particles co-propagate through quantum networks affected by noise, the system always evolves into a steady state in which coherences between certain separable states perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached irrespectively of the configuration in which the particles are prepared.
Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which modern technologies are founded. In general, the most prominent adversary of
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scatte
The underlying probabilistic theory for quantum mechanics is non-Kolmogorovian. The order in which physical observables will be important if they are incompatible (non-commuting). In particular, the notion of conditioning needs to be handled with car
Two primary facets of quantum technological advancement that hold great promise are quantum communication and quantum computation. For quantum communication, the canonical resource is entanglement. For quantum gate implementation, the resource is mag
We investigate a possibility to generate non-classical states in light-matter coupled noisy quantum systems, namely the anisotropic Rabi and Dicke models. In these hybrid quantum systems a competing influence of coherent internal dynamics and environ