ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonances in open quantum systems

298   0   0.0 ( 0 )
 نشر من قبل Ingrid Rotter
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wavefunctions into which the system is embedded. This causes an {it external mixing} (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points (EPs). The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wavefunctions. At and near an EP, the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S-matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator which are embedded in one common continuum and influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.



قيم البحث

اقرأ أيضاً

We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strat egy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators.
Time crystals are genuinely non-equilibrium quantum phases of matter that break time-translational symmetry. While in non-equilibrium closed systems time crystals have been experimentally realized, it remains an open question whether or not such a ph ase survives when systems are coupled to an environment. Although dissipation caused by the coupling to a bath may stabilize time crystals in some regimes, the introduction of incoherent noise may also destroy the time crystalline order. Therefore, the mechanisms that stabilize a time crystal in open and closed systems are not necessarily the same. Here, we propose a way to identify an open system time crystal based on a single object: the Floquet propagator. Armed with such a description we show time-crystalline behavior in an explicitly short-range interacting open system and demonstrate the crucial role of the nature of the decay processes.
Irreversibility is a fundamental concept with important implications at many levels. It pinpoints the fundamental difference between the intrinsically reversible microscopic equations of motion and the unidirectional arrow of time that emerges at the macroscopic level. More pragmatically, a full quantification of the degree of irreversibility of a given process can help in the characterisation of the performance of thermo-machines operating at the quantum level. Here, we review the concept of entropy production, which is commonly intended as {it the} measure of thermodynamic irreversibility of a process, pinpointing the features and shortcomings of its current formulation.
149 - Ingrid Rotter 2018
The aim of the paper is to study the question whether or not equilibrium states exist in open quantum systems that are embedded in at least two environments and are described by a non-Hermitian Hamilton operator $cal H$. The eigenfunctions of $cal H$ contain the influence of exceptional points (EPs) as well as that of external mixing (EM) of the states via the environment. As a result, equilibrium states exist (far from EPs). They are different from those of the corresponding closed system. Their wavefunctions are orthogonal although the Hamiltonian is non-Hermitian.
The dissipation generated during a quasistatic thermodynamic process can be characterised by introducing a metric on the space of Gibbs states, in such a way that minimally-dissipating protocols correspond to geodesic trajectories. Here, we show how to generalize this approach to open quantum systems by finding the thermodynamic metric associated to a given Lindblad master equation. The obtained metric can be understood as a perturbation over the background geometry of equilibrium Gibbs states, which is induced by the Kubo-Mori-Bogoliubov (KMB) inner product. We illustrate this construction on two paradigmatic examples: an Ising chain and a two-level system interacting with a bosonic bath with different spectral densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا