ﻻ يوجد ملخص باللغة العربية
Stochastic PDE eigenvalue problems often arise in the field of uncertainty quantification, whereby one seeks to quantify the uncertainty in an eigenvalue, or its eigenfunction. In this paper we present an efficient multilevel quasi-Monte Carlo (MLQMC) algorithm for computing the expectation of the smallest eigenvalue of an elliptic eigenvalue problem with stochastic coefficients. Each sample evaluation requires the solution of a PDE eigenvalue problem, and so tackling this problem in practice is notoriously computationally difficult. We speed up the approximation of this expectation in four ways: 1) we use a multilevel variance reduction scheme to spread the work over a hierarchy of FE meshes and truncation dimensions; 2) we use QMC methods to efficiently compute the expectations on each level; 3) we exploit the smoothness in parameter space and reuse the eigenvector from a nearby QMC point to reduce the number of iterations of the eigensolver; and 4) we utilise a two-grid discretisation scheme to obtain the eigenvalue on the fine mesh with a single linear solve. The full error analysis of a basic MLQMC algorithm is given in the companion paper [Gilbert and Scheichl, 2021], and so in this paper we focus on how to further improve the efficiency and provide theoretical justification of the enhancement strategies 3) and 4). Numerical results are presented that show the efficiency of our algorithm, and also show that the four strategies we employ are complementary.
We consider the problem of estimating the probability of a large loss from a financial portfolio, where the future loss is expressed as a conditional expectation. Since the conditional expectation is intractable in most cases, one may resort to neste
Pole-swapping algorithms are generalizations of bulge-chasing algorithms for the generalized eigenvalue problem. Structure-preserving pole-swapping algorithms for the palindromic and alternating eigenvalue problems, which arise in control theory, are
We propose a novel $hp$-multilevel Monte Carlo method for the quantification of uncertainties in the compressible Navier-Stokes equations, using the Discontinuous Galerkin method as deterministic solver. The multilevel approach exploits hierarchies o
Random batch algorithms are constructed for quantum Monte Carlo simulations. The main objective is to alleviate the computational cost associated with the calculations of two-body interactions, including the pairwise interactions in the potential ene
In this work we develop a new hierarchical multilevel approach to generate Gaussian random field realizations in an algorithmically scalable manner that is well-suited to incorporate into multilevel Markov chain Monte Carlo (MCMC) algorithms. This ap