In this paper we discuss a hybridised method for FEM-BEM coupling. The coupling from both sides use a Nitsche type approach to couple to the trace variable. This leads to a formulation that is robust and flexible with respect to approximation spaces and can easily be combined as a building block with other hybridised methods. Energy error norm estimates and the convergence of Jacobi iterations are proved and the performance of the method is illustrated on some computational examples.
We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The
proposed coupling technique requires minimal changes in the existing schemes while maintaining strict stability, accuracy, and energy conservation. Results are demonstrated on linear and nonlinear scalar conservation laws in two spatial dimensions.
In this paper, a stabilized extended finite element method is proposed for Stokes interface problems on unfitted triangulation elements which do not require the interface align with the triangulation. The velocity solution and pressure solution on ea
ch side of the interface are separately expanded in the standard nonconforming piecewise linear polynomials and the piecewise constant polynomials, respectively. Harmonic weighted fluxes and arithmetic fluxes are used across the interface and cut edges (segment of the edges cut by the interface), respectively. Extra stabilization terms involving velocity and pressure are added to ensure the stable inf-sup condition. We show a priori error estimates under additional regularity hypothesis. Moreover, the errors {in energy and $L^2$ norms for velocity and the error in $L^2$ norm for pressure} are robust with respect to the viscosity {and independent of the location of the interface}. Results of numerical experiments are presented to {support} the theoretical analysis.
We design and analyze a coupling of a discontinuous Galerkin finite element method with a boundary element method to solve the Helmholtz equation with variable coefficients in three dimensions. The coupling is realized with a mortar variable that is
related to an impedance trace on a smooth interface. The method obtained has a block structure with nonsingular subblocks. We prove quasi-optimality of the $h$- and $
In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary
correctors is a common technique in existing methods to prove the convergence rate of MsFEM, while we think not reflects the essence of those problems. Instead, we focus on the first-order expansion structure. Through recently developed estimations in homogenization theory, our convergence rate is provided with milder assumptions and in neat forms.
The Ericksen model for nematic liquid crystals couples a director field with a scalar degree of orientation variable, and allows the formation of various defects with finite energy. We propose a simple but novel finite element approximation of the pr
oblem that can be implemented easily within standard finite element packages. Our scheme is projection-free and thus circumvents the use of weakly acute meshes, which are quite restrictive in 3D but are required by recent algorithms for convergence. We prove stability and $Gamma$-convergence properties of the new method in the presence of defects. We also design an effective nested gradient flow algorithm for computing minimizers that controls the violation of the unit-length constraint of the director. We present several simulations in 2D and 3D that document the performance of the proposed scheme and its ability to capture quite intriguing defects.
Timo Betcke
,Micha{l} Bosy
,Erik Burman
.
(2021)
.
"Hybrid coupling of finite element and boundary element methods using Nitsches method and the Calderon projection"
.
Micha{\\l} Bosy
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا