ﻻ يوجد ملخص باللغة العربية
Min-Sum decoding is widely used for decoding LDPC codes in many modern digital video broadcasting decoding due to its relative low complexity and robustness against quantization error. However, the suboptimal performance of the Min-Sum affects the integrated performance of wireless receivers. In this paper, we present the idea of adapting the scaling factor of the Min-Sum decoder with iterations through a simple approximation. For the ease of implementation the scaling factor can be changed in a staircase fashion. The stair step is designed to optimize the decoder performance and the required storage for its different values. The variable scaling factor proposed algorithm produces a non-trivial improvement of the performance of the Min-Sum decoding as verified by simulation results.
In this paper, we propose a novel low complexity scaling strategy of min-sum decoding algorithm for irregular LDPC codes. In the proposed method, we generalize our previously proposed simplified Variable Scaled Min-Sum (SVS-min-sum) by replacing the
Non-binary low-density parity-check codes are robust to various channel impairments. However, based on the existing decoding algorithms, the decoder implementations are expensive because of their excessive computational complexity and memory usage. B
This paper considers density evolution for lowdensity parity-check (LDPC) and multi-edge type low-density parity-check (MET-LDPC) codes over the binary input additive white Gaussian noise channel. We first analyze three singleparameter Gaussian appro
Spatially coupled codes have been shown to universally achieve the capacity for a large class of channels. Many variants of such codes have been introduced to date. We discuss a further such variant that is particularly simple and is determined by a
In this paper, a new method for decoding Low Density Parity Check (LDPC) codes, based on Multi-Layer Perceptron (MLP) neural networks is proposed. Due to the fact that in neural networks all procedures are processed in parallel, this method can be co