ﻻ يوجد ملخص باللغة العربية
We study the waves and wave-making forces acting on ships travelling on currents which vary as a function of depth. Our concern is realism; we consider a real current profile from the Columbia River, and model ships with dimensions and Froude numbers typical of three classes of vessels operating in these waters. To this end we employ the most general theory of waves from free-surface sources on shear current to date, which we derive and present here. Expressions are derived for ship waves which satisfy an arbitrary dispersion relation and are generated by a wave source acting on the free surface, with the sources shape and time-dependence is also being arbitrary. Practical calculation procedures for numerically calculating dispersion on a shear current which may vary arbitrarily with depth both in direction and magnitude, are indicated. For ships travelling at oblique angle to a shear-current, the ship wave pattern is asymmetrical, and wave-making radiation forces have a lateral component in addition to the conventional wave resistance, the sternward component. No corresponding lateral force exists in the absence of shear. We consider the dependence of wave resistance and lateral force for upstream, downstream and cross-stream motion on the Columbia River current, both in steady motion and during two different maneouvres: a ship suddenly set in motion, and a ship turning through 360 deg. We find that for smaller ships (tugboats, fishing-boats) the wave resistance can differ drastically from that in quiescent water, and depends strongly on Froude number and direction of motion. For Froude numbers typical of such boats, wave resistance can vary by a factor 3 between upstream and downstream motion, and the strong Froude number dependence is made more complicated by interference effects. The lateral radiation force ... [abstract truncated due to ArXiVs space restrictions]
We investigate the weakly nonlinear dynamics of transient gravity waves at infinite depth under the influence of a shear current varying linearly with depth. An analytical solution is permitted via integration of the Euler equations. Although similar
We consider waves radiated by a disturbance of oscillating strength moving at constant velocity along the free surface of a shear flow which, when undisturbed, has uniform horizontal vorticity of magnitude $S$. When no current is present the problem
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulat
We analyze transient dynamics during shear start-up in viscoelastic flows between two parallel plates, with a specific focus on the signatures for the onset of transient shear banding using the Johnson-Segalman, non-stretching Rolie-Poly and Giesekus
Wave resistance is the drag force associated to the emission of waves by a moving disturbance at a fluid free surface. In the case of capillary-gravity waves it undergoes a transition from zero to a finite value as the speed of the disturbance is inc