ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal discretization

59   0   0.0 ( 0 )
 نشر من قبل Vladimir Temlyakov
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف V.N. Temlyakov




اسأل ChatGPT حول البحث

The paper is devoted to discretization of integral norms of functions from a given collection of finite dimensional subspaces. For natural collections of subspaces of the multivariate trigonometric polynomials we construct sets of points, which are optimally (in the sense of order) good for each subspace of a collection from the point of view of the integral norm discretization. We call such sets universal. Our construction of the universal sets is based on deep results on existence of special nets, known as (t,r,d)-nets.



قيم البحث

اقرأ أيضاً

69 - V.N. Temlyakov 2017
The paper is devoted to discretization of integral norms of functions from a given finite dimensional subspace. This problem is very important in applications but there is no systematic study of it. We present here a new technique, which works well f or discretization of the integral norm. It is a combination of probabilistic technique, based on chaining, with results on the entropy numbers in the uniform norm.
97 - Dmitry Pavlov 2015
The main objective of this paper is to develop a general method of geometric discretization for infinite-dimensional systems and apply this method to the EPDiff equation. The method described below extends one developed by Pavlov et al. for incompres sible Euler fluids. Here this method is presented in a general case applicable to all, not only divergence-free, vector fields. Also, a different (pseudospectral) representation of the velocity field is used. We will apply this method to the one-dimensional EPDiff equation and present numerical results.
In this work we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible fluid . The nonlinear elasticity operator is discretized using a Hybrid High-Order method, while the Darcy operator relies on a Symmetric Weighted Interior Penalty discontinuous Galerkin scheme. The method is valid in two and three space dimensions, delivers an inf-sup stable discretization on general meshes including polyhedral elements and nonmatching interfaces, supports arbitrary approximation orders, and has a reduced cost thanks to the possibility of statically condensing a large subset of the unknowns for lineariz
A filtered subspace iteration for computing a cluster of eigenvalues and its accompanying eigenspace, known as FEAST, has gained considerable attention in recent years. This work studies issues that arise when FEAST is applied to compute part of the spectrum of an unbounded partial differential operator. Specifically, when the resolvent of the partial differential operator is approximated by the discontinuous Petrov Galerkin (DPG) method, it is shown that there is no spectral pollution. The theory also provides bounds on the discretization errors in the spectral approximations. Numerical experiments for simple operators illustrate the theory and also indicate the value of the algorithm beyond the confines of the theoretical assumptions. The utility of the algorithm is illustrated by applying it to compute guided transverse core modes of a realistic optical fiber.
We propose a new semi-discretization scheme to approximate nonlinear Fokker-Planck equations, by exploiting the gradient flow structures with respect to the 2-Wasserstein metric. We discretize the underlying state by a finite graph and define a discr ete 2-Wasserstein metric. Based on such metric, we introduce a dynamical system, which is a gradient flow of the discrete free energy. We prove that the new scheme maintains dissipativity of the free energy and converges to a discrete Gibbs measure at exponential (dissipation) rate. We exhibit these properties on several numerical examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا