ﻻ يوجد ملخص باللغة العربية
A filtered subspace iteration for computing a cluster of eigenvalues and its accompanying eigenspace, known as FEAST, has gained considerable attention in recent years. This work studies issues that arise when FEAST is applied to compute part of the spectrum of an unbounded partial differential operator. Specifically, when the resolvent of the partial differential operator is approximated by the discontinuous Petrov Galerkin (DPG) method, it is shown that there is no spectral pollution. The theory also provides bounds on the discretization errors in the spectral approximations. Numerical experiments for simple operators illustrate the theory and also indicate the value of the algorithm beyond the confines of the theoretical assumptions. The utility of the algorithm is illustrated by applying it to compute guided transverse core modes of a realistic optical fiber.
We introduce a cousin of the DPG method - the DPG* method - discuss their relationship and compare the two methods through numerical experiments.
This article introduces the DPG-star (from now on, denoted DPG$^*$) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdeter
We consider semi-discrete discontinuous Galerkin approximations of a general elastodynamics problem, in both {it displacement} and {it displacement-stress} formulations. We present the stability analysis of all the methods in the natural energy norm
We propose and analyze a discretization scheme that combines the discontinuous Petrov-Galerkin and finite element methods. The underlying model problem is of general diffusion-advection-reaction type on bounded domains, with decomposition into two su
The main objective of this paper is to develop a general method of geometric discretization for infinite-dimensional systems and apply this method to the EPDiff equation. The method described below extends one developed by Pavlov et al. for incompres