ترغب بنشر مسار تعليمي؟ اضغط هنا

A high-order discretization of nonlinear poroelasticity

118   0   0.0 ( 0 )
 نشر من قبل Michele Botti
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible fluid. The nonlinear elasticity operator is discretized using a Hybrid High-Order method, while the Darcy operator relies on a Symmetric Weighted Interior Penalty discontinuous Galerkin scheme. The method is valid in two and three space dimensions, delivers an inf-sup stable discretization on general meshes including polyhedral elements and nonmatching interfaces, supports arbitrary approximation orders, and has a reduced cost thanks to the possibility of statically condensing a large subset of the unknowns for lineariz



قيم البحث

اقرأ أيضاً

In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partia l differential system and establish its well-posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid High-Order discretization supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the probability error of the Polynomial Chaos approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.
In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and th ree space dimensions, it supports general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary approximation order, and the resolution cost can be reduced by statically condensing a large subset of the unknowns for lineariz
In this work, we introduce a novel abstract framework for the stability and convergence analysis of fully coupled discretisations of the poroelasticity problem and apply it to the analysis of Hybrid High-Order (HHO) schemes. A relevant feature of the proposed framework is that it rests on mild time regularity assumptions that can be derived from an appropriate weak formulation of the continuous problem. To the best of our knowledge, these regularity results for the Biot problem are new. A novel family of HHO discretisation schemes is proposed and analysed, and their performance numerically evaluated.
120 - Shubin Fu , Eric Chung , Tina Mai 2019
In this paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity problem. The arising system consists of a nonlinear pressure equation and a nonlinear stres s equation in strain-limiting setting, where strains keep bounded while stresses can grow arbitrarily large. After time discretization of the system, to tackle the nonlinearity, we linearize the resulting equations by Picard iteration. To handle the linearized equations, we employ the CEM-GMsFEM and obtain appropriate offline multiscale basis functions for the pressure and the displacement. More specifically, first, auxiliary multiscale basis functions are generated by solving local spectral problems, via the GMsFEM. Then, multiscale spaces are constructed in oversampled regions, by solving a constraint energy minimizing (CEM) problem. After that, this strategy (with the CEM-GMsFEM) is also applied to a static case of the above nonlinear poroelasticity problem, that is, elasticity problem, where the residual based online multiscale basis functions are generated by an adaptive enrichment procedure, to further reduce the error. Convergence of the two cases is demonstrated by several numerical simulations, which give accurate solutions, with converging coarse-mesh sizes as well as few basis functions (degrees of freedom) and oversampling layers.
This paper contributes with a new formal method of spatial discretization of a class of nonlinear distributed parameter systems that allow a port-Hamiltonian representation over a one dimensional manifold. A specific finite dimensional port-Hamiltoni an element is defined that enables a structure preserving discretization of the infinite dimensional model that inherits the Dirac structure, the underlying energy balance and matches the Hamiltonian function on any, possibly nonuniform mesh of the spatial geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا