ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact Design of Dual-Band Circular Polarized Microstrip Antenna with Single Feed

69   0   0.0 ( 0 )
 نشر من قبل Raed Shubair
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel and compact dual band dual sense circularly polarized microstrip patch antenna with single coaxial feed has been reported in the present work. The key idea of generating dual band circular polarisation (CP) is the integration of a square patch with corner truncation and a smaller concentric circular patch with double slits. The first resonance is provided by the larger patch whose corner truncation generates two orthogonal modes. The inner patch controls the higher-order resonance with the CP contributed by two narrow slits. The higher order resonating frequency can be monitored by controlling the dimensions of the circle and the slits. The antenna provides the CP in two orthogonal planes with two different sense of polarisation. The lower order CP is of left-handed orientation, whereas the higher order shows right-handed polarization. The cross-polarization level is also found to be very low.

قيم البحث

اقرأ أيضاً

A novel and compact dual band planar antenna for 2.4/5.2/5.8-GHz wireless local area network(WLAN) applications is proposed and studied in this paper. The antenna comprises of a T-shaped and a F-shaped element to generate two resonant modes for dual band operation. The two elements can independently control the operating frequencies of the two excited resonant modes. The T-element which is fed directly by a 50 $Omega$ microstrip line generates a frequency band at around 5.2 GHz and the antenna parameters can be adjusted to generate a frequency band at 5.8 GHz as well, thus covering the two higher bands of WLAN systems individually. By couple-feeding the F-element through the T-element, a frequency band can be generated at 2.4 GHz to cover the lower band of WLAN system. Hence, the two elements together are very compact with a total area of only 11$times$6.5 mm$^{2}$. A thorough parametric study of key dimensions in the design has been performed and the results obtained have been used to present a generalized design approach. Plots of the return loss and radiation pattern have been given and discussed in detail to show that the design is a very promising candidate for WLAN applications.
We have developed a compact, wide-bandwidth, dual-polarization cloverleaf-shaped antenna to feed the CHIME radio telescope. The antenna has been tuned using CST to have smaller than -10dB s11 for over an octave of bandwidth, covering the full CHIME b and from 400MHz to 800MHz and this performance has been confirmed by measurement. The antennas are made of conventional low loss circuit boards and can be mass produced economically, which is important because CHIME requires 1280 feeds. They are compact enough to be placed 30cm apart in a linear array at any azimuthal rotation.
59 - Bing Xiao , Hang Wong , Di Wu 2019
Smartwatch is a potential candidate for the Internet of Things (IoT) hub. However, the performance of smartwatch antennas is severely restricted by the smartwatch structure, especially when the antennas are designed by traditional methods. For adapti ng smartwatches to the role of IoT hub, a novel method of designing multi-band smartwatch antenna is presented in this paper, aiming at increasing the number of frequency bands, omni-directivity, and structural suitability. Firstly, the fundamental structure (including the full screen and the system PCB) of the smartwatch is analyzed as a whole by characteristic mode analysis (CMA). Thus, abundant resources of characteristic modes are introduced. The fundamental structure is then modified as the radiator of a multi-band antenna. Then, a non-radiating capacitive coupling element (CCE) excites the desired four 0.5-wavelength modes from this structure. This method could fully utilize the intrinsic modes of the smartwatch structure itself, thus exhibits multiple advantages: significantly small size, smaller ground, omni-directional radiation, and fitting to the full-screen smartwatch structure.
In this paper, a single layer Coplanar Waveguide-fed microstrip patch antenna array is presented for biomedical applications. The proposed antenna array is realized on a transparent and flexible Polyethylene Terephthalate substrate, has 1x4 radiating elements and measures only 280 x 192 mm2. The antenna array resonates at 2.68 GHz and has a peak-simulated gain of 10 dBi. A prototype is also fabricated, and the conductive patterns are drawn using cost-efficient adhesive copper foils instead of conventional copper or silver nanoparticle ink. The corresponding measured results agree well with the simulated results. The proposed low profile and cost-efficient transmit antenna array has the potential for wearable born-worn applications, including wireless powering of implantable medical devices.
Microstrip patch antennas (MPAs) are rapidly gaining more attention due to the proliferation of communication devices and systems with frequencies becoming more suitable for the size and performance of this type of antenna. Due to recent advancements in semiconductor technology, high dielectric constant materials are used to achieve additional size reduction which has made MPAs very useful and popular in the design of mobile devices and wireless systems. However, MPAs suffer from problems associated with narrow bandwidth and low gain. Techniques employed for improving the performance of MPA hinge on tweaking features such as the patch size, substrate height, ground plane size and feeding method. In view of this, this research designs and analyzes the performance of an X-band MPA for wireless systems using CST Microwave Studio. Including the ground plane, the proposed design has a low profile structure of 17 mm x 17 mm x 1.6 mm which is suitable for wireless systems. The proposed design also resonates at a frequency of 10 GHz with an omnidirectional radiation pattern exhibiting a gain of 7.2 dBi. Return Loss, VSWR, Gain and Radiation Pattern are the performance indicators employed in this research. The proposed MPA design demonstrates marked performance improvement when benchmarked with a similar MPA designed for 5G applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا