ترغب بنشر مسار تعليمي؟ اضغط هنا

On the relation between the mass of Compact Massive Objects and their host galaxies

65   0   0.0 ( 0 )
 نشر من قبل Roberto Capuzzo-Dolcetta
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supermassive black holes and/or very dense stellar clusters are found in the central regions of galaxies. Nuclear star clusters are present mainly in faint galaxies while upermassive black holes are common in galaxies with masses $geq 10^{10}$ M$_odot $. In the intermediate galactic mass range both types of central massive objects (CMOs) are found. Here we present our collection of a huge set of nuclear star cluster and massive black hole data that enlarges significantly already existing data bases useful to investigate for correlations of their absolute magnitudes, velocity dispersions and masses with structural parameters of their host galaxies. In particular, we directed our attention to some differences between the correlations of nuclear star clusters and massive black holes as subsets of CMOs with hosting galaxies. In this context, the mass-velocity dispersion relation plays a relevant role because it seems the one that shows a clearer difference between the supermassive black holes and nuclear star clusters. The $M_{MBH}-{sigma}$ has a slope of $5.19pm 0.28$ while $M_{NSC}-{sigma}$ has the much smaller slope of $1.84pm 0.64$. The slopes of the CMO mass- host galaxy B magnitude of the two types of CMOs are indistinguishable within the errors while that of the NSC mass-host galaxy mass relation is significantly smaller than for supermassive black holes. Another important result is the clear depauperation of the NSC population in bright galaxy hosts, which reflects also in a clear flattening of the NSC mass vs host galaxy mass at high host masses.

قيم البحث

اقرأ أيضاً

This work aims at studying the $M_{BH}-M_{dyn}$ relation of a sample of $2<z<7$ quasars by constraining their host galaxy masses through full kinematical modeling of the cold gas kinematics, thus avoiding all possible biases and effects introduced by the rough virial estimates usually adopted so far. For this purpose we retrieved public observations of $72$ quasar host galaxies observed in ${rm [CII]_{158mu m}}$ or ${rm CO}$ transitions with the Atacama Large Millimeter Array (ALMA). We then selected those quasars whose line emission is spatially resolved and performed a kinematic analysis on ALMA observations. We estimated the dynamical mass of the systems by modeling the gas kinematics with a rotating disc taking into account geometrical and instrumental effects. Our dynamical mass estimates, combined with $M_{BH}$ obtained from literature and our own new ${rm CIV}lambda1550$ observations, have allowed us to investigate the $ M_{BH}/M_{dyn}$ in the early Universe. Overall we obtained a sample of $10$ quasars at $zsim2-7$ in which line emission is detected with high S/N ($> 5-10$) and the gas kinematics is spatially resolved and dominated by ordered rotation. The estimated dynamical masses place $6$ out of $10$ quasars above the local relation yielding to a $M_{BH}/M_{dyn}$ ratios $sim10times$ higher than those estimated in low-$z$ galaxies. On the other hand, we found that $4$ quasars at $zsim 4-6$ have dynamical-to-BH mass ratios consistent with what is observed in early-type galaxies in the local Universe.
We study a sample of eight massive galaxies that are extreme outliers (3-5$sigma$) in the M$_{bullet}$-M$_mathrm{bulge}$ local scaling relation. Two of these galaxies are confirmed to host extremely large super massive black holes (SMBHs), whereas th e virial mass estimates for the other six are also consistent with having abnormally large SMBHs. From the analysis of their star formation histories and their structural properties we find that all these extreme outliers can be considered as relic galaxies from the early (z$sim$2) Universe: i.e. they are compact (R$_{mathrm{e}}$$<$2 kpc) and have purely old stellar populations (t$gtrsim$10 Gyr). In order to explain the nature of such deviations from the local relations, we propose a scenario in which the hosts of these uber-massive SMBHs are galaxies that have followed a different evolutionary path than the two-phase growth channel assumed for massive galaxies. Once the SMBH and the core of the galaxy are formed at z$sim$2, the galaxy skips the second phase, remaining structurally untouched and without further mass and size increase. We show that if the outliers had followed the normal evolutionary path by growing in size via merger activity, the expected (mild) growth in mass would place them closer to the observed local relations. Our results suggest that the SMBH growth epoch for the most massive galaxies stopped $sim$10Gyr ago.
The unification model for powerful radio galaxies and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrar ed spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that radio galaxies and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from star-forming galaxies.
We investigate the nature of the mass-metallicity (M-Z) relation for long gamma-ray burst (LGRB) host galaxies. Recent studies suggest that the M-Z relation for local LGRB host galaxies may be systematically offset towards lower metallicities relativ e to the M-Z relation defined by the general star forming galaxy (SDSS) population. The nature of this offset is consistent with suggestions that low metallicity environments may be required to produce high mass progenitors, although the detection of several GRBs in high-mass, high-metallicity galaxies challenges the notion of a strict metallicity cut-off for host galaxies that are capable of producing GRBs. We show that the nature of this reported offset may be explained by a recently proposed anti-correlation between the star formation rate (SFR) and the metallicity of star forming galaxies. If low metallicity galaxies produce more stars than their equally massive, high-metallicity counterparts, then transient events that closely trace the SFR in a galaxy would be more likely to be found in these low metallicity, low mass galaxies. Therefore, the offset between the GRB and SDSS defined M-Z relations may be the result of the different methods used to select their respective galaxy populations, with GRBs being biased towards low metallicity, high SFR, galaxies. We predict that such an offset should not be expected of transient events that do not closely follow the star formation history of their host galaxies, such as short duration GRBs and SN Ia, but should be evident in core collapse SNe found through upcoming untargeted surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا