ﻻ يوجد ملخص باللغة العربية
This work aims at studying the $M_{BH}-M_{dyn}$ relation of a sample of $2<z<7$ quasars by constraining their host galaxy masses through full kinematical modeling of the cold gas kinematics, thus avoiding all possible biases and effects introduced by the rough virial estimates usually adopted so far. For this purpose we retrieved public observations of $72$ quasar host galaxies observed in ${rm [CII]_{158mu m}}$ or ${rm CO}$ transitions with the Atacama Large Millimeter Array (ALMA). We then selected those quasars whose line emission is spatially resolved and performed a kinematic analysis on ALMA observations. We estimated the dynamical mass of the systems by modeling the gas kinematics with a rotating disc taking into account geometrical and instrumental effects. Our dynamical mass estimates, combined with $M_{BH}$ obtained from literature and our own new ${rm CIV}lambda1550$ observations, have allowed us to investigate the $ M_{BH}/M_{dyn}$ in the early Universe. Overall we obtained a sample of $10$ quasars at $zsim2-7$ in which line emission is detected with high S/N ($> 5-10$) and the gas kinematics is spatially resolved and dominated by ordered rotation. The estimated dynamical masses place $6$ out of $10$ quasars above the local relation yielding to a $M_{BH}/M_{dyn}$ ratios $sim10times$ higher than those estimated in low-$z$ galaxies. On the other hand, we found that $4$ quasars at $zsim 4-6$ have dynamical-to-BH mass ratios consistent with what is observed in early-type galaxies in the local Universe.
One of the main challenges in using high redshift active galactic nuclei to study the correlations between the mass of the supermassive Black Hole (MBH) and the properties of their active host galaxies is instrumental resolution. Strong lensing magni
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity fun
Correlations between the mass of a supermassive black hole and the properties of its host galaxy (e.g., total stellar mass (M*), luminosity (Lhost)) suggest an evolutionary connection. A powerful test of a co-evolution scenario is to measure the rela
In the last decades several correlations between the mass of the central supermassive black hole (BH) and properties of the host galaxy - such as bulge luminosity and mass, central stellar velocity dispersion, Sersic index, spiral pitch angle etc. -