ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of post-soliton expansion following laser propagation through an underdense plasma

74   0   0.0 ( 0 )
 نشر من قبل Gianluca Sarri
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The expansion of electromagnetic post-solitons emerging from the interaction of a 30 ps, $3times 10^{18}$ W cm$^{-2}$ laser pulse with an underdense deuterium plasma has been observed up to 100 ps after the pulse propagation, when large numbers of post-solitons were seen to remain in the plasma. The temporal evolution of the post-solitons has been accurately characterized with a high spatial and temporal resolution. The observed expansion is compared to analytical models and three dimensional particle-in-cell results providing indication of the polarisation dependence of the post-soliton dynamics.


قيم البحث

اقرأ أيضاً

Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) in underdense plasmas is demonstrated to be unstable, via 3D particle-in-cell simulation and disregarding the Kerr non-linearity. Strong pulse filamentation occurs for RPP in transversely uniform plasma with an increment, $Gamma$, close to the well-known one depending on acceleration, $alpha$, and modulated density gradient length, $L$, as $Gamma approx (alpha/L)^{1/2}$. In deep plasma channels the instability vanishes. Electron self-injection and acceleration by the resulting laser pulse wake is explored.
Three-dimensional particle-in-cell simulation is used to investigate the witness proton acceleration in underdense plasma with a short intense Laguerre-Gaussian (LG) laser pulse. Driven by the LG10 laser pulse, a special bubble with an electron pilla r on the axis is formed, in which protons can be well-confined by the generated transversal focusing field and accelerated by the longitudinal wakefield. The risk of scattering prior to acceleration with a Gaussian laser pulse in underdense plasma is avoided, and protons are accelerated stably to much higher energy. In simulation, a proton beam has been accelerated to 7 GeV from 1 GeV in underdense tritium plasma driven by a 2.14x1022 W/cm2 LG10 laser pulse.
The interaction of ultra-intense laser pulses with an underdense plasma is used in laser-plasma acceleration to create compact sources of ultrashort pulses of relativistic electrons and X-rays. The accelerating structure is a plasma wave, or wakefiel d, that is excited by the laser ponderomotive force, a force that is usually assumed to depend solely on the laser envelope and not on its exact waveform. Here, we use near-single-cycle laser pulses with a controlled carrier-envelope-phase (CEP) to show that the actual waveform of the laser field has a clear impact on the plasma response. We measure relativistic electron beams that are found to be strongly CEP dependent, implying that we achieve waveform control of electron dynamics in underdense laser-plasma interaction. Our results pave the way to high precision, sub-cycle control of electron injection in plasma accelerators, enabling the production of attosecond relativistic electron bunches and X-rays.
An experiment for studying laser self-guiding has been carried out for the high power ultrashort pulse laser interaction with an underdense plasma slab. Formation of an extremely long plasma channel and its bending are observed when the laser pulse p ower is much higher than the critical power for relativistic self-focusing. The long self-guiding channel formation is accompanied by electron acceleration with a low transverse emittance and high electric current. Particle-in-cell simulations show that laser bending occurs when the accelerated electrons overtake the laser pulse and modify the refractive index in the region in front of the laser pulse.
122 - J.F. Qu , X. F. Li , X. Y. Liu 2019
Backward terahertz radiation can be produced by a high-intensity laser normally incident upon an underdense plasma. It is found that terahertz radiation is generated by electrons refluxing along the bubble shell. These shell electrons have similar dy namic trajectories and emit backward radiations to vacuum. This scheme has been proved through electron dynamic calculations as well as by using an ionic sphere model. In addition, the bubble shape is found to influence the radiation frequency, and this scheme can be implemented in both uniform and up-ramp density gradient plasma targets. The terahertz radiation may be used for diagnosing the electron bubble shape in the interaction between an intense laser and plasma. All results are presented via 2.5 dimensional particle-in-cell simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا