ترغب بنشر مسار تعليمي؟ اضغط هنا

Construction of rational solutions of the real modified Korteweg-de Vries equation from its periodic solutions

146   0   0.0 ( 0 )
 نشر من قبل Jingsong He
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit $lambda_{j}$ $rightarrow$ $lambda_{1}$ of the Lax pair eigenvalues used in the $n$-fold Darboux transformation that generates the order-$n$ periodic solution from a constant seed solution. Further, this special kind of breather solution of order $n$ can be used to generate the order-$n$ rational solution by taking the limit $lambda_{1}$ $rightarrow$ $lambda_{0}$, where $lambda_{0}$ is a special eigenvalue associated to the eigenfunction $phi$ of the Lax pair of the mKdV equation. This eigenvalue $lambda_0$, for which $phi(lambda_0)=0$, corresponds to the limit of infinite period of the periodic solution. %This second limit of double eigenvalue degeneration might be realized approximately in optical fibers, in which an injected %initial ideal pulse is created by a comb system and a programmable optical filter according to the profile of the analytical %form of the b-positon at a certain spatial position $x_{0}$. Therefore, we suggest a new way to observe the higher-order %rational solutions in optical fibers, namely, to measure the wave patterns at the central region of the higher order b-positon %generated by ideal initial pulses when the eigenvalue $lambda_{1}$ is approaching $lambda_{0}$. Our analytical and numerical results show the effective mechanism of generation of higher-order rational solutions of the mKdV equation from the double eigenvalue degeneration process of multi-periodic solutions.



قيم البحث

اقرأ أيضاً

The $n$-fold Darboux transformation $T_{n}$ of the focusing real mo-di-fied Kor-te-weg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the $n$-soliton solutions of the mKdV equation are als o expressed by determinants whose elements consist of the eigenvalues $lambda_{j}$ and the corresponding eigenfunctions of the associated Lax equation. The nonsingular $n$-positon solutions of the focusing mKdV equation are obtained in the special limit $lambda_{j}rightarrowlambda_{1}$, from the corresponding $n$-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the $n$-positon solution into $n$ single-soliton solutions, the trajectories, and the corresponding phase shifts of the multi-positons are also investigated.
We provide a general solution for a first order ordinary differential equation with a rational right-hand side, which arises in constructing asymptotics for large time of simultaneous solutions of the Korteweg-de Vries equation and the stationary par t of its higher non-autonomous symmetry. This symmetry is determined by a linear combination of the first higher autonomous symmetry of the Korteweg-de Vries equation and of its classical Galileo symmetry. This general solution depends on an arbitrary parameter. By the implicit function theorem, locally it is determined by the first integral explicitly written in terms of hypergeometric functions. A particular case of the general solution defines self-similar solutions of the Whitham equations, found earlier by G.V. Potemin in 1988. In the well-known works by A.V. Gurevich and L.P. Pitaevsky in early 1970s, it was established that these solutions of the Whitham equations describe the origination in the leading term of non-damping oscillating waves in a wide range of problems with a small dispersion. The result of this article supports once again an empirical rule saying that under various passages to the limits, integrable equations can produce only integrable, in certain sense, equations. We propose a general conjecture: integrable ordinary differential equations similar to that considered in the present paper should also arise in describing the asymptotics at large times for other symmetry solutions to evolution equations admitting the application of the method of inverse scattering problem.
90 - Wen-Rong Sun 2021
The stability of the elliptic solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation is studied. The orbital stability of the cmKdV equation was established in [19] when the periodic orbits do not oscillate around zero. In th is paper, we study the periodic solutions corresponding to the case that the orbits oscillate around zero. Using the integrability of the defocusing cmKdV equation, we prove the spectral stability of the elliptic solutions. We show that one special linear combination of the first five conserved quantities produces a Lyapunov functional, which implies that the elliptic solutions are orbitally stable with respect to the subharmonic perturbations.
The theory of inverse scattering is developed to study the initial-value problem for the modified matrix Korteweg-de Vries (mmKdV) equation with the $2mtimes2m$ $(mgeq 1)$ Lax pairs under the nonzero boundary conditions at infinity. In the direct pro blem, by introducing a suitable uniform transformation we establish the proper complex $z$-plane in order to discuss the Jost eigenfunctions, scattering matrix and their analyticity and symmetry of the equation. Moreover the asymptotic behavior of the Jost functions and scattering matrix needed in the inverse problem are analyzed via Wentzel-Kramers-Brillouin expansion. In the inverse problem, the generalized Riemann-Hilbert problem of the mmKdV equation is first established by using the analyticity of the modified eigenfunctions and scattering coefficients. The reconstruction formula of potential function with reflection-less case is derived by solving this Riemann-Hilbert problem and using the scattering data. In addition the dynamic behavior of the solutions for the focusing mmKdV equation including one- and two- soliton solutions are presented in detail under the the condition that the potential is scalar and the $2times2$ symmetric matrix. Finally, we provide some detailed proofs and weak version of trace formulas to show that the asymptotic phase of the potential and the scattering data.
In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation be haviors. In the process of spectral analysis, it is necessary to introduce Riemann surface to avoid the discussion of multi-valued functions, and to obtain the analytical and asymptotic properties needed to establish the RH problem. The eigenfunction have a column that is not analytic in a given region, so we introduce the auxiliary eigenfunction and the adjoint matrix, which is necessary to derive the analytical eigenfunctions. The eigenfunctions have three kinds of symmetry, which leads to three kinds of symmetry of the scattering matrix, and the discrete spectrum is also divided into three categories by us. The asymptoticity of the modified eigenfunction is derived. Based on the analysis, the RH problem with four jump matrices in a given area is established, and the relationship between the cmKdV equation and the solution of the RH problem is revealed. The residue condition of reflection coefficient with simple pole is established. According to the classification of discrete spectrum, we discuss the soliton solutions corresponding to three kinds of discrete spectrum classification and their propagation behaviors in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا