ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnon Dispersion and Specific Heat of Chiral Magnets on the Pyrochlore Lattice

129   0   0.0 ( 0 )
 نشر من قبل Naoya Arakawa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Naoya Arakawa




اسأل ChatGPT حول البحث

Chiral magnets are magnetically ordered insulators having spin scalar chirality, and magnons of chiral magnets have been poorly understood. We study the magnon dispersion and specific heat for four chiral magnets with Q=0 on the pyrochlore lattice. This study is based on the linear-spin-wave approximation for the S=1/2 effective Hamiltonian consisting of two kinds of Heisenberg interaction and two kinds of Dzyaloshinsky-Moriya interaction. We show that the three-in-one-out type chiral magnets possess an optical branch of the magnon dispersion near q=0, in addition to three quasiacoustic branches. This differs from the all-in/all-out type chiral magnets, which possess four quasiacoustic branches. We also show that all four chiral magnets have a gapped magnon energy at q=0, indicating the absence of the Goldstone type gapless excitation. These results are useful for experimentally identifying the three-in-one-out or all-in/all-out type chiral order. Then, we show that there is no qualitative difference in the specific heat among the four magnets. This indicates that the specific heat is not useful for distinguishing the kinds of chiral orders. We finally compare our results with experiments and provide a proposal for the three-in-one-out type chiral magnets.



قيم البحث

اقرأ أيضاً

71 - Lipeng Jin , Bin Xi , Jia-Wei Mei 2021
Magnetic skyrmions are stable topological spin textures with significant potential for spintronics applications. Merons, as half-skyrmions, have been discovered by recent observations, which have also raised the upsurge of research. The main purpose of this work is to study further the lattice forms of merons and skyrmions. We study a classical spin model with Dzyaloshinskii-Moriya interaction, easy-axis, and in-plane magnetic anisotropies on the honeycomb lattice via Monte Carlo simulations. This model could also describe the low-energy behaviors of a two-component bosonic model with a synthetic spin-orbit coupling in the deep Mott insulating region or two-dimensional materials with strong spin-orbit coupling. The results demonstrate the emergence of different sizes of spiral phases, skyrmion and vortex superlattice in absence of magnetic field, furthered the emergence of field-induced meron and skyrmion superlattice. In particular, we give the simulated evolution of the spin textures driven by the magnetic field, which could further reveal the effect of the magnetic field for inducing meron and skyrmion superlattice.
Periodical equilibrium states of magnetization exist in chiral ferromagnetic films, if the constant of antisymmetric exchange (Dzyaloshinskii-Moriya interaction) exceeds some critical value. Here, we demonstrate that this critical value can be signif icantly modified in curved film. The competition between symmetric and antisymmetric exchange interactions in a curved film can lead to a new type of domain wall which is inclined with respect to the cylinder axis. The wall structure is intermediate between Bloch and Neel ones. The exact analytical solutions for phase boundary curves and the new domain wall are obtained.
315 - F. Azizi , H. Rezania 2021
We study the effects of longitudinal magnetic field and temperature on the thermodynamic properties of two dimensional Heisenberg antiferromagnet on the honeycomb lattice in the presence of anisotropic Dzyaloshinskii-Moriya interaction and next neare st neighbor coupling exchange constant. In particular, the temperature dependence of specific heat have been investigated for various physical parameters in the model Hamiltonian. Using a hard core bosonic representation, the behavior of thermodynamic properties has been studied by means of excitation spectrum of mapped bosonic gas. The effect of Dzyaloshinskii-Moriya interaction term on thermodynamic properties has also been studied via the bosonic model by Greens function approach. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. At low temperatures, the specific heat is found to be monotonically increasing with temperature for magnetic fields in the gapped field induced phase region. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the dependence of magnetization on Dzyaloshinskii-Moriya interaction strength for different next nearest neighbor coupling constant.
The spin-liquid phase of two highly frustrated pyrochlore magnets Gd2Ti2O7 and Gd2Sn2O7 is probed using electron spin resonance in the temperature range 1.3 - 30 K. The deviation of the absorption line from the paramagnetic position u =gamma H obser ved in both compounds below the Curie-Weiss temperature Theta_CW ~ 10 K, suggests an opening up of a gap in the excitation spectra. On cooling to 1.3 K (which is above the ordering transition T_N ~ 1.0 K) the resonance spectrum is transformed into a wide band of excitations with the gap amounting to Delta ~ 26 GHz (1.2 K) in Gd2Ti2O7 and 18 GHz (0.8 K) in Gd2Sn2O7. The gaps increase linearly with the external magnetic field. For Gd2Ti2O7 this branch co-exists with an additional nearly paramagnetic line absent in Gd2Sn2O7. These low lying excitations with gaps, which are preformed in the spin-liquid state, may be interpreted as collective spin modes split by the single-ion anisotropy.
Two beta-pyrochlore oxide superconductors, CsOs2O6 and RbOs2O6, are studied thermodynamically by measuring specific heat on polycrystalline samples. It is found that a Sommerfeld coefficient ? is nearly equal, 20 mJ/K2 mol Os, in the two oxides with different superconducting transition temperatures; Tc = 3.3 K and 6.3 K, respectively. This suggests that the density of states at the Fermi level is not a crucial parameter to determine the Tc of the beta-pyrochlore oxide superconductors, which is incompatible with the general expectation for a conventional BCS-type superconductor. Anomalous lattice contributions to specific heat at low temperature are also reported, which may come from nearly localized phonon modes associated with the rattling of the alkali metal ions weakly bound in an oversized cage formed by OsO6 octahedra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا