ﻻ يوجد ملخص باللغة العربية
The spin-liquid phase of two highly frustrated pyrochlore magnets Gd2Ti2O7 and Gd2Sn2O7 is probed using electron spin resonance in the temperature range 1.3 - 30 K. The deviation of the absorption line from the paramagnetic position u =gamma H observed in both compounds below the Curie-Weiss temperature Theta_CW ~ 10 K, suggests an opening up of a gap in the excitation spectra. On cooling to 1.3 K (which is above the ordering transition T_N ~ 1.0 K) the resonance spectrum is transformed into a wide band of excitations with the gap amounting to Delta ~ 26 GHz (1.2 K) in Gd2Ti2O7 and 18 GHz (0.8 K) in Gd2Sn2O7. The gaps increase linearly with the external magnetic field. For Gd2Ti2O7 this branch co-exists with an additional nearly paramagnetic line absent in Gd2Sn2O7. These low lying excitations with gaps, which are preformed in the spin-liquid state, may be interpreted as collective spin modes split by the single-ion anisotropy.
We investigate spin correlations in the dipolar Heisenberg antiferromagnet Gd2Sn2O7 using polarised neutron-scattering measurements in the correlated paramagnetic regime. Using Monte Carlo methods, we show that our data are sensitive to weak further-
The van der Waals magnets provide an ideal platform to explore quantum magnetism both theoretically and experimentally. We study a classical J1-J2 model with distinct magnetic degrees of freedom on a honeycomb lattice that can be realized in some van
Single-crystal x-ray diffraction, density-functional band-structure calculations, and muon spin relaxation ($mu$SR) are used to probe pressure evolution of the triangular spin-liquid candidate YbMgGaO$_4$. The rhombohedral crystal structure is retain
Spin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles$^1$. Theories typically define such states using gauge fields and deconfined quasiparticle excitations that emerge from a simple rule governing th
The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Remarkably, the spin ices provide one of very few experiment